These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21060352)

  • 21. Highly birefringent, highly negative dispersion compensating photonic crystal fiber.
    Bala A; Chowdhury KR; Mia MB; Faisal M
    Appl Opt; 2017 Sep; 56(25):7256-7261. PubMed ID: 29047988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity.
    Ju S; Watekar PR; Han WT
    Opt Express; 2011 Jan; 19(3):2599-607. PubMed ID: 21369080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-solid highly nonlinear singlemode fibers with a tailored dispersion profile.
    Poletti F; Feng X; Ponzo GM; Petrovich MN; Loh WH; Richardson DJ
    Opt Express; 2011 Jan; 19(1):66-80. PubMed ID: 21263543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonchemical-vapor-deposition process for fabrication of highly efficient Yb-doped large core fibers.
    Devautour M; Roy P; Février S; Pedrido C; Sandoz F; Romano V
    Appl Opt; 2009 Nov; 48(31):G139-42. PubMed ID: 19881635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm.
    Lyngsø JK; Mangan BJ; Jakobsen C; Roberts PJ
    Opt Express; 2009 Dec; 17(26):23468-73. PubMed ID: 20052054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Broadband dispersion-compensating photonic crystal fiber.
    Yang S; Zhang Y; He L; Xie S
    Opt Lett; 2006 Oct; 31(19):2830-2. PubMed ID: 16969392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator.
    Zhou Y; Cheung KK; Li Q; Yang S; Chui PC; Wong KK
    Opt Lett; 2010 Jul; 35(14):2427-9. PubMed ID: 20634852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anti-Resonant Hollow Core Fibers with Modified Shape of the Core for the Better Optical Performance in the Visible Spectral Region-A Numerical Study.
    Stawska HI; Popenda MA; Bereś-Pawlik E
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A low bending loss multimode fiber transmission system.
    Donlagic D
    Opt Express; 2009 Nov; 17(24):22081-95. PubMed ID: 19997454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-mode GaAs/AIGaAs W waveguides with a low propagation loss.
    Byun YT; Park KH; Kim SH; Choi SS; Lim TK
    Appl Opt; 1996 Feb; 35(6):928-33. PubMed ID: 21069091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-loss single-mode fibers with different B(2)O(3)-SiO(2) compositions.
    Tasker GW; French WG; Simpson JR; Kaiser P; Presby HM
    Appl Opt; 1978 Jun; 17(11):1836-42. PubMed ID: 20198077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wavelength dispersion of optical fibers directly measured by ''difference method'' in the 0.8-1.6 microm range.
    Sugimura A; Daikoku K
    Rev Sci Instrum; 1979 Mar; 50(3):343. PubMed ID: 18699505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of bending on zero dispersion operation of single-mode optical fibers.
    Garth SJ
    Appl Opt; 1991 Mar; 30(9):1048-51. PubMed ID: 20582104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-loss single-mode modified conjoined tube hollow-core fiber.
    Shaha KSR; Khaleque A
    Appl Opt; 2021 Jul; 60(21):6243-6250. PubMed ID: 34613290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tm3+-doped CW fiber laser based on a highly GeO2-doped dispersion-shifted fiber.
    Dvoyrin VV; Sorokina IT; Mashinsky VM; Ischakova LD; Dianov EM; Kalashnikov VL; Yashkov MV; Khopin VF; Guryanov AN
    Opt Express; 2011 Apr; 19(9):7992-9. PubMed ID: 21643048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profile dispersion characteristics in high-bandwidth graded-index optical fibers.
    Horiguchi M; Ohmori Y; Takata H
    Appl Opt; 1980 Sep; 19(18):3159-67. PubMed ID: 20234579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system.
    Iyer S; Coen S; Vanholsbeeck F
    Opt Lett; 2009 Oct; 34(19):2903-5. PubMed ID: 19794762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fiber-pigtailed temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators.
    Andersen TB; Bozhevolnyi SI; Markey L; Dereux A
    Opt Express; 2011 Dec; 19(27):26423-8. PubMed ID: 22274227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of mechanical stress on the transmission properties of optical fiber packaged in a composite structure.
    Legrange JD; Ling HC; Velez DM
    Appl Opt; 1994 Jun; 33(18):3890-5. PubMed ID: 20935732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-low-loss high-aspect-ratio Si3N4 waveguides.
    Bauters JF; Heck MJ; John D; Dai D; Tien MC; Barton JS; Leinse A; Heideman RG; Blumenthal DJ; Bowers JE
    Opt Express; 2011 Feb; 19(4):3163-74. PubMed ID: 21369138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.