These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21060490)

  • 1. Evaluation of microlens properties in the presence of high spherical aberration.
    Testorf M; Sinzinger S
    Appl Opt; 1995 Oct; 34(28):6431-7. PubMed ID: 21060490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high numerical aperture, polymer-based, planar microlens array.
    Tripathi A; Chokshi TV; Chronis N
    Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive liquid microlenses activated by stimuli-responsive hydrogels.
    Dong L; Agarwal AK; Beebe DJ; Jiang H
    Nature; 2006 Aug; 442(7102):551-4. PubMed ID: 16885981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refractive and diffractive properties of planar micro-optical elements.
    Rossi M; Kunz RE; Herzig HP
    Appl Opt; 1995 Sep; 34(26):5996-6007. PubMed ID: 21060437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical characterization of high numerical aperture microlenses for quality assessment and fabrication process optimization.
    Béguelin J; Symeonidis M; Noell W; Voelkel R; Scharf T
    Appl Opt; 2020 Apr; 59(12):3601-3607. PubMed ID: 32400494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of microlenses by laser chemical vapor deposition.
    Kubo M; Hanabusa M
    Appl Opt; 1990 Jun; 29(18):2755-9. PubMed ID: 20567326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatic control in coextruded layered polymer microlenses.
    Crescimanno M; Oder TN; Andrews JH; Zhou C; Petrus JB; Merlo C; Bagheri C; Hetzel C; Tancabel J; Singer KD; Baer E
    Opt Express; 2014 Dec; 22(24):29668-78. PubMed ID: 25606898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selfoc microlens with a spherical surface.
    Yamamoto N; Nishi H; Nishizawa K; Kitano I
    Appl Opt; 1982 Mar; 21(6):1021-3. PubMed ID: 20389797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of PDMS microlenses based on elastomeric molding technology.
    Yu H; Zhou G; Chau FS; Lee F
    Opt Lett; 2009 Nov; 34(21):3454-6. PubMed ID: 19881625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discretely tunable optofluidic compound microlenses.
    Fei P; He Z; Zheng C; Chen T; Men Y; Huang Y
    Lab Chip; 2011 Sep; 11(17):2835-41. PubMed ID: 21799999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-numerical-aperture microlens shape measurement with digital holographic microscopy.
    Kozacki T; Józwik M; Liżewski K
    Opt Lett; 2011 Nov; 36(22):4419-21. PubMed ID: 22089583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fabrication of aspherical microlenses using focused ion-beam techniques.
    Langridge MT; Cox DC; Webb RP; Stolojan V
    Micron; 2014 Feb; 57():56-66. PubMed ID: 24239415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications.
    Mirkhalaf M; Murukeshan VM; Tor SB; Shinoj VK; Sathiyamoorthy K
    Rev Sci Instrum; 2011 Apr; 82(4):043110. PubMed ID: 21528998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microlenses with defined contour shapes.
    Cadarso VJ; Perera-Núñez J; Jacot-Descombes L; Pfeiffer K; Ostrzinski U; Voigt A; Llobera A; Grützer G; Brugger J
    Opt Express; 2011 Sep; 19(19):18665-70. PubMed ID: 21935235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm.
    Shirakawa T; Ishikawa KL; Suzuki S; Yamada Y; Takahashi H
    Opt Express; 2010 Apr; 18(8):8383-91. PubMed ID: 20588683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of holographic microlenses using a deep UV lithographed zone plate.
    Ming H; Wu Y; Xie J; Nakajima T
    Appl Opt; 1990 Dec; 29(34):5111-4. PubMed ID: 20577520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of multilens micro-optical systems with large numerical aperture by stacking of microlenses.
    Klug R; Brenner KH
    Appl Opt; 1999 Dec; 38(34):7002-8. PubMed ID: 18324244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated free-space optical interconnect fabricated in planar optics using chirped microlens arrays.
    Wippermann F; Radtke D; Amberg M; Sinzinger S
    Opt Express; 2006 Oct; 14(22):10765-78. PubMed ID: 19529486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.