These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21060496)

  • 1. Optical distortion in the field of a lithotripter shock wave.
    Carnell MT; Emmony DC
    Appl Opt; 1995 Oct; 34(28):6465-70. PubMed ID: 21060496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Focal size and shock wave pressure: a comparison of three different physical shock wave generators].
    Janowitz P; Stuber M; Meier T; Steiner R; Schneider HT; Ell C; Neuhaus H; Ott R; Swobodnik W; Kratzer W
    Dtsch Med Wochenschr; 1990 Dec; 115(51-52):1945-9. PubMed ID: 2261859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo transfection of melanoma cells by lithotripter shock waves.
    Bao S; Thrall BD; Gies RA; Miller DL
    Cancer Res; 1998 Jan; 58(2):219-21. PubMed ID: 9443395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses.
    Cathignol E; Tavakkoli J; Birer A; Arefiev A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):788-99. PubMed ID: 18244230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The modelling of the cavitation processes during the focusing of the shock wave in an electrodynamic lithotriptor].
    Andriianov IuV; Li AA; Teslenko VS
    Vopr Kurortol Fizioter Lech Fiz Kult; 1992; (4):42-8. PubMed ID: 1455798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of spark-generated N-waves in air using an optical schlieren method.
    Karzova MM; Yuldashev PV; Khokhlova VA; Ollivier S; Salze E; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3244-52. PubMed ID: 26093414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of shock wave cavitation damage in vitro.
    Lifshitz DA; Williams JC; Sturtevant B; Connors BA; Evan AP; McAteer JA
    Ultrasound Med Biol; 1997; 23(3):461-71. PubMed ID: 9160914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of shock wave unsteadiness using a high-speed schlieren system and digital image processing.
    Estruch D; Lawson NJ; MacManus DG; Garry KP; Stollery JL
    Rev Sci Instrum; 2008 Dec; 79(12):126108. PubMed ID: 19123599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation.
    Ohl CD; Wolfrum B
    Biochim Biophys Acta; 2003 Dec; 1624(1-3):131-8. PubMed ID: 14642823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of extended use of an electromagnetic lithotripter beyond the manufacturer's recommended maintenance schedule.
    Chen TY; Ponsot Y; Brouillette M; Tétrault JP; Tu le M
    Can J Urol; 2007 Jun; 14(3):3560-5. PubMed ID: 17594746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble observation and transient pressure signals in mechanical heart valve cavitation study.
    Lijun X; Hock YJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):235-44. PubMed ID: 12701797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A performance analysis of an extracorporeal shock wave lithotripter: spatial pressure distribution and the effects of lithotripter voltage, electrode life, and tissue attenuation.
    Monaghan P; Gilbert JL; Prystowsky JB
    J Stone Dis; 1992 Oct; 4(4):289-300. PubMed ID: 10147810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameters for predicting electromagnetic lithotripter failure: quality assurance implications.
    Davros WJ; Garra BS; Goldberg JA; Murphy LL; Zeman RK
    J Stone Dis; 1992 Jul; 4(3):220-6. PubMed ID: 10147669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical distortion evaluation of an aerodynamically heated window using the interfacial fluid thickness concept.
    Xiao H; Wang Z; Fan Z
    Appl Opt; 2011 Jul; 50(19):3135-44. PubMed ID: 21743513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.