These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 21060584)

  • 1. Improvement of speckle statistics in double-wavelength superheterodyne interferometry.
    Dändliker R; Geiser M; Giunti C; Zatti S; Margheri G
    Appl Opt; 1995 Nov; 34(31):7197-201. PubMed ID: 21060584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-wavelength superheterodyne interferometer for absolute ranging with submillimeter resolution: results obtained with a demonstration model by use of rough and reflective targets.
    Margheri G; Giunti C; Zatti S; Manhart S; Maurer R
    Appl Opt; 1997 Sep; 36(25):6211-6. PubMed ID: 18259469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity detection of speckles for double-wavelength interferometry on rough surfaces.
    Trautner J; Leuchs G
    Appl Opt; 2002 Oct; 41(29):6200-10. PubMed ID: 12389990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Acceleration Measurement Method with Large Non-ambiguity Range and High Resolution via Synthetic Wavelength and Single Wavelength Superheterodyne Interferometry.
    Lu Q; Pan D; Bai J; Wang K
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement.
    Le Floch S; Salvadé Y; Droz N; Mitouassiwou R; Favre P
    Appl Opt; 2010 Feb; 49(4):714-7. PubMed ID: 20119024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO₄ microchip laser.
    Jacquin O; Lacot E; Glastre W; Hugon O; Guillet de Chatellus H
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1741-6. PubMed ID: 21811337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser eye safety: the implications of ordinary speckle statistics and of speckled-speckle statistics.
    Fried DL
    J Opt Soc Am; 1981 Jul; 71(7):914-6. PubMed ID: 7252621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical properties of laser speckle produced in the diffraction field.
    Ohtsubo J; Asakura T
    Appl Opt; 1977 Jun; 16(6):1742-53. PubMed ID: 20168782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-wavelength laser interferometry using superheterodyne detection.
    Dändliker R; Thalmann R; Prongué D
    Opt Lett; 1988 May; 13(5):339-41. PubMed ID: 19745891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical surface roughness determination using speckle correlation technique.
    Léger D; Mathieu E; Perrin JC
    Appl Opt; 1975 Apr; 14(4):872-7. PubMed ID: 20134992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-axis multiple scattering of a laser beam in turbid media: comparison of theory and experiment.
    Gersti SA; Zardecki A; Unruh WP; Stupin DM; Stokes GH; Elliott NE
    Appl Opt; 1987 Mar; 26(5):779-85. PubMed ID: 20454223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers.
    Azouigui S; Badr T; Wallerand JP; Himbert M; Salgado J; Juncar P
    Rev Sci Instrum; 2010 May; 81(5):053112. PubMed ID: 20515129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry.
    Lee JY; Lu MP; Lin KY; Huang SH
    Appl Opt; 2012 Mar; 51(8):1095-100. PubMed ID: 22410988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical stress measurement by an achromatic optical digital speckle pattern interferometry strain sensor with radial in-plane sensitivity: experimental comparison with electrical strain gauges.
    Viotti MR; Albertazzi G A; Kapp WA
    Appl Opt; 2011 Mar; 50(7):1014-22. PubMed ID: 21364725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Average speckle size as a function of intensity threshold level: comparisonof experimental measurements with theory.
    Alexander TL; Harvey JE; Weeks AR
    Appl Opt; 1994 Dec; 33(35):8240-50. PubMed ID: 20963057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser wavelength stabilization with a passive interferometer.
    Lipsett MS; Lee PH
    Appl Opt; 1966 May; 5(5):823-6. PubMed ID: 20048954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contouring by electronic speckle pattern interferometry employing dual beam illumination.
    Joenathan C; Pfister B; Tiziani HJ
    Appl Opt; 1990 May; 29(13):1905-11. PubMed ID: 20563108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probability density function of the intensity of a laser beam propagating in the maritime environment.
    Korotkova O; Avramov-Zamurovic S; Malek-Madani R; Nelson C
    Opt Express; 2011 Oct; 19(21):20322-31. PubMed ID: 21997043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of autodyne and heterodyne laser interferometry for imaging.
    Lacot E; Jacquin O; Roussely G; Hugon O; Guillet de Chatellus H
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):2450-8. PubMed ID: 21045910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Doppler velocimetry using a superheterodyne spectrum analyzer.
    Leblond J; Badawy el SE
    Appl Opt; 1975 Apr; 14(4):902-8. PubMed ID: 20134997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.