These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 21060622)

  • 1. Fringe visibility, irradiance, and accuracy in common path interferometers for visualization of phase disturbances.
    Anderson CS
    Appl Opt; 1995 Nov; 34(32):7474-85. PubMed ID: 21060622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving fringe ambiguities of a wide-field Michelson interferometer using visibility measurements of a noncollimated laser beam.
    Wan X; Wang J; Ge J
    Appl Opt; 2009 Sep; 48(26):4909-16. PubMed ID: 19745853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of geometric phase techniques to stellar interferometry.
    Tango WJ; Davis J
    Appl Opt; 1996 Feb; 35(4):621-3. PubMed ID: 21069048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffraction effects in long path interferometers.
    Tango WJ; Twiss RQ
    Appl Opt; 1974 Aug; 13(8):1814-9. PubMed ID: 20134575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference patterns in cross-grating interferometers: further analysis.
    Cheng YS
    Appl Opt; 1989 Feb; 28(3):556-64. PubMed ID: 20548519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting visibility of interference fringes in X-ray grating interferometry.
    Yan A; Wu X; Liu H
    Opt Express; 2016 Jul; 24(14):15927-39. PubMed ID: 27410861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion in stellar interferometry.
    Tango WJ
    Appl Opt; 1990 Feb; 29(4):516-21. PubMed ID: 20556140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of semiconductor laser diode phase and amplitude noise in interferometric fiber optic sensors.
    Newson TP; Farahi F; Jones JD; Jackson DA
    Appl Opt; 1989 Oct; 28(19):4210-5. PubMed ID: 20555849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photon-noise limits to the detection of the closure phase in optical interferometry.
    Roggemann MC
    Appl Opt; 1996 Apr; 35(11):1809-14. PubMed ID: 21085304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffraction effects in optical microelectromechanical system Michelson interferometers.
    Al-Saeed TA; Khalil DA
    Appl Opt; 2010 Jul; 49(20):3960-6. PubMed ID: 20648174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matter-wave interferometer for large molecules.
    Brezger B; Hackermüller L; Uttenthaler S; Petschinka J; Arndt M; Zeilinger A
    Phys Rev Lett; 2002 Mar; 88(10):100404. PubMed ID: 11909334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New common-path phase shifting interferometer using a polarization technique.
    Kadono H; Takai N; Asakura T
    Appl Opt; 1987 Mar; 26(5):898-904. PubMed ID: 20454239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-loop phase stabilizing and phase stepping methods for fiber-optic projected-fringe digital interferometry.
    Chao Z; Fa-Jie D
    Rev Sci Instrum; 2011 Nov; 82(11):113105. PubMed ID: 22128964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased interference fringe visibility from the post-fabrication heat treatment of a perfect crystal silicon neutron interferometer.
    Heacock B; Arif M; Cory DG; Gnaeupel-Herold T; Haun R; Huber MG; Jamer ME; Nsofini J; Pushin DA; Sarenac D; Taminiau I; Young AR
    Rev Sci Instrum; 2018 Feb; 89(2):023502. PubMed ID: 29495801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration-desensitized interferometer by continuous phase shifting with high-speed fringe capturing.
    Park J; Kim SW
    Opt Lett; 2010 Jan; 35(1):19-21. PubMed ID: 20664659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive-subtractive phase-modulated electronic speckle interferometry: analysis of fringe visibility.
    Pouet BF; Krishnaswamy S
    Appl Opt; 1994 Oct; 33(28):6609-16. PubMed ID: 20941200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding the spectra of low-finesse extrinsic optical fiber Fabry-Perot interferometers.
    Ma C; Dong B; Gong J; Wang A
    Opt Express; 2011 Nov; 19(24):23727-42. PubMed ID: 22109399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero fringe visibility in the classical localization plane of a two-beam interferometer.
    Simon JM; Comastri SA
    J Opt Soc Am A Opt Image Sci Vis; 2004 Aug; 21(8):1488-95. PubMed ID: 15330477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier fringes in the two-aperture common-path interferometer.
    Meneses-Fabian C; Rodriguez-Zurita G
    Opt Lett; 2011 Mar; 36(5):642-4. PubMed ID: 21368934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fringe visibility errors resulting from dual object imaging for stellar interferometers.
    Snyder J; Bailey C; Schmoll W; Zuraski S; Beecher E
    Appl Opt; 2021 Sep; 60(25):G207-G216. PubMed ID: 34613211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.