These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21060728)

  • 1. Mechanism of processive movement of monomeric and dimeric kinesin molecules.
    Xie P
    Int J Biol Sci; 2010 Nov; 6(7):665-74. PubMed ID: 21060728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of processive movement of dimeric kinesin.
    Guo SK; Wang PY; Xie P
    J Theor Biol; 2017 Feb; 414():62-75. PubMed ID: 27899285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the kinesin neck region in processive microtubule-based motility.
    Romberg L; Pierce DW; Vale RD
    J Cell Biol; 1998 Mar; 140(6):1407-16. PubMed ID: 9508773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle.
    Zaniewski TM; Gicking AM; Fricks J; Hancock WO
    J Biol Chem; 2020 Dec; 295(52):17889-17903. PubMed ID: 33082143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the molecular mechanism of the multitasking kinesin-8 motor.
    Peters C; Brejc K; Belmont L; Bodey AJ; Lee Y; Yu M; Guo J; Sakowicz R; Hartman J; Moores CA
    EMBO J; 2010 Oct; 29(20):3437-47. PubMed ID: 20818331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling processive motion of kinesin-13 MCAK and kinesin-14 Cik1-Kar3 molecular motors.
    Xie P
    Protein Sci; 2021 Oct; 30(10):2092-2105. PubMed ID: 34382258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling study of kinesin-13 MCAK microtubule depolymerase.
    Xie P
    Eur Biophys J; 2024 Aug; 53(5-6):339-354. PubMed ID: 39093405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural snapshots of the kinesin-2 OSM-3 along its nucleotide cycle: implications for the ATP hydrolysis mechanism.
    Varela PF; Chenon M; Velours C; Verhey KJ; Ménétrey J; Gigant B
    FEBS Open Bio; 2021 Mar; 11(3):564-577. PubMed ID: 33513284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: Mechanochemistry of the kinesin-1 ATPase.
    Cross RA
    Biopolymers; 2016 Aug; 105(8):476-82. PubMed ID: 27120111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin.
    Okada Y; Higuchi H; Hirokawa N
    Nature; 2003 Jul; 424(6948):574-7. PubMed ID: 12891363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive charge in the K-loop of the kinesin-3 motor KIF1A regulates superprocessivity by enhancing microtubule affinity in the one-head-bound state.
    Zaniewski TM; Hancock WO
    J Biol Chem; 2023 Feb; 299(2):102818. PubMed ID: 36549649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of ATP hydrolysis for kinesin processivity.
    Farrell CM; Mackey AT; Klumpp LM; Gilbert SP
    J Biol Chem; 2002 May; 277(19):17079-87. PubMed ID: 11864969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change.
    Tomishige M; Vale RD
    J Cell Biol; 2000 Nov; 151(5):1081-92. PubMed ID: 11086009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain through the neck linker ensures processive runs: a DNA-kinesin hybrid nanomachine study.
    Miyazono Y; Hayashi M; Karagiannis P; Harada Y; Tadakuma H
    EMBO J; 2010 Jan; 29(1):93-106. PubMed ID: 19893487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of kinesin's processivity.
    Adio S; Jaud J; Ebbing B; Rief M; Woehlke G
    PLoS One; 2009; 4(2):e4612. PubMed ID: 19242550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A metal switch for controlling the activity of molecular motor proteins.
    Cochran JC; Zhao YC; Wilcox DE; Kull FJ
    Nat Struct Mol Biol; 2011 Dec; 19(1):122-7. PubMed ID: 22198464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.
    Atherton J; Farabella I; Yu IM; Rosenfeld SS; Houdusse A; Topf M; Moores CA
    Elife; 2014 Sep; 3():e03680. PubMed ID: 25209998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The E-hook of tubulin interacts with kinesin's head to increase processivity and speed.
    Lakämper S; Meyhöfer E
    Biophys J; 2005 Nov; 89(5):3223-34. PubMed ID: 16100283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14.
    Benoit MPMH; Asenjo AB; Paydar M; Dhakal S; Kwok BH; Sosa H
    Nat Commun; 2021 Jun; 12(1):3637. PubMed ID: 34131133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new look at the microtubule binding patterns of dimeric kinesins.
    Hoenger A; Thormählen M; Diaz-Avalos R; Doerhoefer M; Goldie KN; Müller J; Mandelkow E
    J Mol Biol; 2000 Apr; 297(5):1087-103. PubMed ID: 10764575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.