These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21060908)

  • 1. PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation.
    Köhler S; Weilbeer C; Howitz S; Becker H; Beushausen V; Belder D
    Lab Chip; 2011 Jan; 11(2):309-14. PubMed ID: 21060908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble-free operation of a microfluidic free-flow electrophoresis chip with integrated Pt electrodes.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2008 Jun; 80(11):4111-8. PubMed ID: 18435546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed free-flow electrophoresis on chip.
    Zhang CX; Manz A
    Anal Chem; 2003 Nov; 75(21):5759-66. PubMed ID: 14588015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip.
    Mourzina Y; Steffen A; Kalyagin D; Carius R; Offenhäusser A
    Electrophoresis; 2005 May; 26(9):1849-60. PubMed ID: 15719361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes.
    Henderson RD; Guijt RM; Haddad PR; Hilder EF; Lewis TW; Breadmore MC
    Lab Chip; 2010 Jul; 10(14):1869-72. PubMed ID: 20448880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic separations of neuromediators on microfluidic devices.
    Mourzina Y; Kalyagin D; Steffen A; Offenhäusser A
    Talanta; 2006 Oct; 70(3):489-98. PubMed ID: 18970798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient elution moving boundary electrophoresis for high-throughput multiplexed microfluidic devices.
    Shackman JG; Munson MS; Ross D
    Anal Chem; 2007 Jan; 79(2):565-71. PubMed ID: 17222021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells.
    Zheng W; Wang Z; Zhang W; Jiang X
    Lab Chip; 2010 Nov; 10(21):2906-10. PubMed ID: 20844778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistep liquid-phase lithography for fast prototyping of microfluidic free-flow-electrophoresis chips.
    Jezierski S; Gitlin L; Nagl S; Belder D
    Anal Bioanal Chem; 2011 Nov; 401(8):2651-6. PubMed ID: 21892629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of microfluidic chip with integrated optics for electrophoretic separations of proteins.
    Vieillard J; Mazurczyk R; Morin C; Hannes B; Chevolot Y; Desbène PL; Krawczyk S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jan; 845(2):218-25. PubMed ID: 16962832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein separation using free-flow electrophoresis microchip etched in a single step.
    Wang P; Zhang L; Shan Y; Cong Y; Liang Y; Han B; Liang Z; Zhang Y
    J Sep Sci; 2010 Jul; 33(13):2039-44. PubMed ID: 20506429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device.
    Fonslow BR; Barocas VH; Bowser MT
    Anal Chem; 2006 Aug; 78(15):5369-74. PubMed ID: 16878871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturizing free-flow electrophoresis - a critical review.
    Kohlheyer D; Eijkel JC; van den Berg A; Schasfoort RB
    Electrophoresis; 2008 Mar; 29(5):977-93. PubMed ID: 18232029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass.
    Pu QS; Luttge R; Gardeniers HJ; van den Berg A
    Electrophoresis; 2003 Jan; 24(1-2):162-71. PubMed ID: 12652587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique.
    Wang W; Zhao L; Zhang JR; Wang XM; Zhu JJ; Chen HY
    J Chromatogr A; 2006 Dec; 1136(1):111-7. PubMed ID: 17078959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates.
    Segato TP; Coltro WK; Almeida AL; Piazetta MH; Gobbi AL; Mazo LH; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2526-33. PubMed ID: 20665913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.