BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21060931)

  • 1. Hg bioavailability and impact on bacterial communities in a long-term polluted soil.
    Ruggiero P; Terzano R; Spagnuolo M; Cavalca L; Colombo M; Andreoni V; Rao MA; Perucci P; Monaci E
    J Environ Monit; 2011 Jan; 13(1):145-56. PubMed ID: 21060931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.
    Lipińska A; Wyszkowska J; Kucharski J
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-soluble mercury induced by organic amendments affected microbial community assemblage in mercury-polluted paddy soil.
    Hu H; Li M; Wang G; Drosos M; Li Z; Hu Z; Xi B
    Chemosphere; 2019 Dec; 236():124405. PubMed ID: 31545202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Toxkit microbiotests for toxicity assessment in soil and compost.
    Dubova L; Zariņa Dz
    Environ Toxicol; 2004 Aug; 19(4):274-9. PubMed ID: 15269896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile.
    Altimira F; Yáñez C; Bravo G; González M; Rojas LA; Seeger M
    BMC Microbiol; 2012 Sep; 12():193. PubMed ID: 22950448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants.
    Zagury GJ; Neculita CM; Bastien C; Deschênes L
    Environ Toxicol Chem; 2006 Apr; 25(4):1138-47. PubMed ID: 16629154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors.
    Osterwalder S; Huang JH; Shetaya WH; Agnan Y; Frossard A; Frey B; Alewell C; Kretzschmar R; Biester H; Obrist D
    Environ Pollut; 2019 Jul; 250():944-952. PubMed ID: 31085481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury speciation and effects on soil microbial activities.
    Tazisong IA; Senwo ZN; Williams MI
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):854-62. PubMed ID: 22423992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of combined use of iodide and compost on Hg accumulation by Lepidium sativum L.
    Smolinska B; Leszczynska J
    J Environ Manage; 2015 Mar; 150():499-507. PubMed ID: 25560659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China.
    Liu YR; Delgado-Baquerizo M; Bi L; Zhu J; He JZ
    Microbiome; 2018 Oct; 6(1):183. PubMed ID: 30336790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil.
    Dell'Amico E; Mazzocchi M; Cavalca L; Allievi L; Andreoni V
    Microbiol Res; 2008; 163(6):671-83. PubMed ID: 17207985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in clover rhizosphere microbial community and diazotrophs in mercury-contaminated soils.
    Zhu H; Teng Y; Wang X; Zhao L; Ren W; Luo Y; Christie P
    Sci Total Environ; 2021 May; 767():145473. PubMed ID: 33636759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term fertilization on the diversity of bacterial mercuric reductase gene in a Chinese upland soil.
    Liu YR; He JZ; Zhang LM; Zheng YM
    J Basic Microbiol; 2012 Feb; 52(1):35-42. PubMed ID: 22052505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of activities, abundances and community structures of soil denitrifiers to short-term mercury stress.
    Zhou Z; Zheng Y; Shen J; Zhang L; Liu Y; He J
    J Environ Sci (China); 2012; 24(3):369-75. PubMed ID: 22655348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.
    Subrahmanyam G; Shen JP; Liu YR; Archana G; Zhang LM
    Environ Monit Assess; 2016 Feb; 188(2):112. PubMed ID: 26803661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercury induced community tolerance in microbial biofilms is related to pollution gradients in a long-term polluted river.
    Kovac Virsek M; Hubad B; Lapanje A
    Aquat Toxicol; 2013 Nov; 144-145():208-17. PubMed ID: 24184840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation.
    Smolinska B; Szczodrowska A; Leszczynska J
    Int J Phytoremediation; 2017 Aug; 19(8):765-773. PubMed ID: 28448157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial communities and enzyme activities of PAHs polluted soils.
    Andreoni V; Cavalca L; Rao MA; Nocerino G; Bernasconi S; Dell'Amico E; Colombo M; Gianfreda L
    Chemosphere; 2004 Nov; 57(5):401-12. PubMed ID: 15331267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil: the reclamation effect of vermicomposted olive wastes.
    Moreno B; Vivas A; Nogales R; Macci C; Masciandaro G; Benitez E
    Environ Sci Pollut Res Int; 2009 May; 16(3):253-64. PubMed ID: 18751749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes.
    Duarte GF; Rosado AS; Seldin L; de Araujo W; van Elsas JD
    Appl Environ Microbiol; 2001 Mar; 67(3):1052-62. PubMed ID: 11229891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.