These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 21060938)
1. Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells. Hild N; Schneider OD; Mohn D; Luechinger NA; Koehler FM; Hofmann S; Vetsch JR; Thimm BW; Müller R; Stark WJ Nanoscale; 2011 Feb; 3(2):401-9. PubMed ID: 21060938 [TBL] [Abstract][Full Text] [Related]
2. Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Buschmann J; Härter L; Gao S; Hemmi S; Welti M; Hild N; Schneider OD; Stark WJ; Lindenblatt N; Werner CM; Wanner GA; Calcagni M Injury; 2012 Oct; 43(10):1689-97. PubMed ID: 22769980 [TBL] [Abstract][Full Text] [Related]
3. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
4. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related]
5. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900 [TBL] [Abstract][Full Text] [Related]
6. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Kim J; Jeong SY; Ju YM; Yoo JJ; Smith TL; Khang G; Lee SJ; Atala A Biomed Mater; 2013 Feb; 8(1):014107. PubMed ID: 23353783 [TBL] [Abstract][Full Text] [Related]
7. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
8. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576 [TBL] [Abstract][Full Text] [Related]
9. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
10. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells. Karaman O; Kumar A; Moeinzadeh S; He X; Cui T; Jabbari E J Tissue Eng Regen Med; 2016 Feb; 10(2):E132-46. PubMed ID: 23897753 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM J Biomater Sci Polym Ed; 2016 Aug; 27(11):1139-54. PubMed ID: 27120980 [TBL] [Abstract][Full Text] [Related]
12. Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Kuo YC; Yeh CF Colloids Surf B Biointerfaces; 2011 Feb; 82(2):624-31. PubMed ID: 21074381 [TBL] [Abstract][Full Text] [Related]
13. Poly(L-lactide-co-glycolide) scaffolds coated with collagen and glycosaminoglycans: impact on proliferation and osteogenic differentiation of human mesenchymal stem cells. Wojak-Cwik IM; Hintze V; Schnabelrauch M; Moeller S; Dobrzynski P; Pamula E; Scharnweber D J Biomed Mater Res A; 2013 Nov; 101(11):3109-22. PubMed ID: 23526792 [TBL] [Abstract][Full Text] [Related]
14. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970 [TBL] [Abstract][Full Text] [Related]
15. Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. Schneider OD; Loher S; Brunner TJ; Uebersax L; Simonet M; Grass RN; Merkle HP; Stark WJ J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):350-62. PubMed ID: 17618506 [TBL] [Abstract][Full Text] [Related]
16. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. He F; Li J; Ye J Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Thurnher D; Ewers R Clin Oral Implants Res; 2005 Aug; 16(4):417-24. PubMed ID: 16117765 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Meng ZX; Li HF; Sun ZZ; Zheng W; Zheng YF Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):699-706. PubMed ID: 25427476 [TBL] [Abstract][Full Text] [Related]
19. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells. Hild N; Fuhrer R; Mohn D; Bubenhofer SB; Grass RN; Luechinger NA; Feldman K; Dora C; Stark WJ Biomed Mater; 2012 Oct; 7(5):054103. PubMed ID: 22972023 [TBL] [Abstract][Full Text] [Related]
20. Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro. Sogo Y; Ito A; Matsuno T; Oyane A; Tamazawa G; Satoh T; Yamazaki A; Uchimura E; Ohno T Biomed Mater; 2007 Jun; 2(2):116-23. PubMed ID: 18458444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]