BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21060948)

  • 41. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome.
    Domon B; Bodenmiller B; Carapito C; Hao Z; Huehmer A; Aebersold R
    J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CUB domain-containing protein 1 is a novel regulator of anoikis resistance in lung adenocarcinoma.
    Uekita T; Jia L; Narisawa-Saito M; Yokota J; Kiyono T; Sakai R
    Mol Cell Biol; 2007 Nov; 27(21):7649-60. PubMed ID: 17785447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative membrane proteomics applying narrow range peptide isoelectric focusing for studies of small cell lung cancer resistance mechanisms.
    Eriksson H; Lengqvist J; Hedlund J; Uhlén K; Orre LM; Bjellqvist B; Persson B; Lehtiö J; Jakobsson PJ
    Proteomics; 2008 Aug; 8(15):3008-18. PubMed ID: 18654985
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer.
    Raijmakers R; Kraiczek K; de Jong AP; Mohammed S; Heck AJ
    Anal Chem; 2010 Feb; 82(3):824-32. PubMed ID: 20058876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions.
    Ma PC; Kijima T; Maulik G; Fox EA; Sattler M; Griffin JD; Johnson BE; Salgia R
    Cancer Res; 2003 Oct; 63(19):6272-81. PubMed ID: 14559814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and beta(1)-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro.
    Cordes N; Beinke C; Plasswilm L; van Beuningen D
    Strahlenther Onkol; 2004 Mar; 180(3):157-64. PubMed ID: 14991204
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples.
    Narumi R; Murakami T; Kuga T; Adachi J; Shiromizu T; Muraoka S; Kume H; Kodera Y; Matsumoto M; Nakayama K; Miyamoto Y; Ishitobi M; Inaji H; Kato K; Tomonaga T
    J Proteome Res; 2012 Nov; 11(11):5311-22. PubMed ID: 22985185
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics.
    Tsai CF; Wang YT; Yen HY; Tsou CC; Ku WC; Lin PY; Chen HY; Nesvizhskii AI; Ishihama Y; Chen YJ
    Nat Commun; 2015 Mar; 6():6622. PubMed ID: 25814448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies.
    Shevchuk O; Abidi N; Klawonn F; Wissing J; Nimtz M; Kugler C; Steinert M; Goldmann T; Jänsch L
    J Proteome Res; 2014 Nov; 13(11):5230-9. PubMed ID: 24702127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New candidate targets of protein phosphatase-1c-gamma-2 in mouse testis revealed by a differential phosphoproteome analysis.
    Henderson H; Macleod G; Hrabchak C; Varmuza S
    Int J Androl; 2011 Aug; 34(4):339-51. PubMed ID: 20618881
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphoproteomic analysis of primary human multiple myeloma cells.
    Ge F; Xiao CL; Yin XF; Lu CH; Zeng HL; He QY
    J Proteomics; 2010 May; 73(7):1381-90. PubMed ID: 20230923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-scale proteome quantification of hepatocellular carcinoma tissues by a three-dimensional liquid chromatography strategy integrated with sample preparation.
    Xu B; Wang F; Song C; Sun Z; Cheng K; Tan Y; Wang H; Zou H
    J Proteome Res; 2014 Aug; 13(8):3645-54. PubMed ID: 24972180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measuring phosphorylation-specific changes in response to kinase inhibitors in mammalian cells using quantitative proteomics.
    Ozlü N; Kirchner M; Steen JJ
    Methods Mol Biol; 2012; 795():217-31. PubMed ID: 21960226
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphoproteome Characterization of Human Colorectal Cancer SW620 Cell-Derived Exosomes and New Phosphosite Discovery for C-HPP.
    Guo J; Cui Y; Yan Z; Luo Y; Zhang W; Deng S; Tang S; Zhang G; He QY; Wang T
    J Proteome Res; 2016 Nov; 15(11):4060-4072. PubMed ID: 27470641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential phosphoprotein mapping in cancer cells using protein microarrays produced from 2-D liquid fractionation.
    Pal M; Moffa A; Sreekumar A; Ethier SP; Barder TJ; Chinnaiyan A; Lubman DM
    Anal Chem; 2006 Feb; 78(3):702-10. PubMed ID: 16448042
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphoprotein profiling by PA-GeLC-MS/MS.
    Kristjansdottir K; Wolfgeher D; Lucius N; Angulo DS; Kron SJ
    J Proteome Res; 2008 Jul; 7(7):2812-24. PubMed ID: 18510356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of malignancy-associated phosphoproteome changes in human colorectal cancer induced by cell surface binding of growth-inhibitory galectin-4.
    Michalak M; Warnken U; Schnölzer M; Gabius HJ; Kopitz J
    IUBMB Life; 2019 Mar; 71(3):364-375. PubMed ID: 30550624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Analysis of Phosphoproteome Changes in MDA MB 468 Cancer Cell Line in Response to Expression of p63 Isoforms Using Mass Spectrometry].
    Dvořáková P; Nekulová M; Holčaková J; Vojtěšek B; Hernychova L
    Klin Onkol; 2015; 28 Suppl 2():2S11-9. PubMed ID: 26374153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein phosphorylation in encystment-induced Colpoda cucullus: localization and identification of phosphoproteins.
    Sogame Y; Kojima K; Takeshita T; Fujiwara S; Miyata S; Kinoshita E; Matsuoka T
    FEMS Microbiol Lett; 2012 Jun; 331(2):128-35. PubMed ID: 22458378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of Phosphotyrosine Signaling Networks in Lung Cancer Cell Lines.
    Broncel M; Huang PH
    Methods Mol Biol; 2017; 1636():253-262. PubMed ID: 28730484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.