These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21060949)
1. Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide. Senguen FT; Lee NR; Gu X; Ryan DM; Doran TM; Anderson EA; Nilsson BL Mol Biosyst; 2011 Feb; 7(2):486-96. PubMed ID: 21060949 [TBL] [Abstract][Full Text] [Related]
2. Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16-22 self-assembly. Senguen FT; Doran TM; Anderson EA; Nilsson BL Mol Biosyst; 2011 Feb; 7(2):497-510. PubMed ID: 21135968 [TBL] [Abstract][Full Text] [Related]
3. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20-29) amyloid self-assembly. Doran TM; Kamens AJ; Byrnes NK; Nilsson BL Proteins; 2012 Apr; 80(4):1053-65. PubMed ID: 22253015 [TBL] [Abstract][Full Text] [Related]
4. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity. Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346 [TBL] [Abstract][Full Text] [Related]
5. Impact on the replacement of Phe by Trp in a short fragment of Aβ amyloid peptide on the formation of fibrils. Chaudhary N; Nagaraj R J Pept Sci; 2011 Feb; 17(2):115-23. PubMed ID: 21234983 [TBL] [Abstract][Full Text] [Related]
6. Alanine scanning mutagenesis of Abeta(1-40) amyloid fibril stability. Williams AD; Shivaprasad S; Wetzel R J Mol Biol; 2006 Apr; 357(4):1283-94. PubMed ID: 16476445 [TBL] [Abstract][Full Text] [Related]
7. Influence of end-capping on the self-assembly of model amyloid peptide fragments. Castelletto V; Hamley IW; Cenker Ç; Olsson U; Adamcik J; Mezzenga R; Miravet JF; Escuder B; Rodríguez-Llansola F J Phys Chem B; 2011 Mar; 115(9):2107-16. PubMed ID: 21309578 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of Phe19 and Phe20 on fibril formation by amyloidogenic peptide A beta 16-22 (Ac-KLVFFAE-NH2). Inouye H; Gleason KA; Zhang D; Decatur SM; Kirschner DA Proteins; 2010 Aug; 78(10):2306-21. PubMed ID: 20544966 [TBL] [Abstract][Full Text] [Related]
9. Amyloid-forming propensity of the hydrophobic non-natural amino acid on the fibril-forming core peptide of human tau. Hirata A; Sugimoto K; Konno T; Morii T Bioorg Med Chem Lett; 2007 Jun; 17(11):2971-4. PubMed ID: 17416523 [TBL] [Abstract][Full Text] [Related]
10. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives. Ryan DM; Doran TM; Anderson SB; Nilsson BL Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045 [TBL] [Abstract][Full Text] [Related]
11. Role of aromatic interactions in amyloid formation by peptides derived from human Amylin. Tracz SM; Abedini A; Driscoll M; Raleigh DP Biochemistry; 2004 Dec; 43(50):15901-8. PubMed ID: 15595845 [TBL] [Abstract][Full Text] [Related]
12. Balancing hydrophobicity and sequence pattern to influence self-assembly of amphipathic peptides. Betush RJ; Urban JM; Nilsson BL Biopolymers; 2018 Jan; ():. PubMed ID: 29292825 [TBL] [Abstract][Full Text] [Related]
13. The absence of favorable aromatic interactions between beta-sheet peptides. Chung DM; Dou Y; Baldi P; Nowick JS J Am Chem Soc; 2005 Jul; 127(28):9998-9. PubMed ID: 16011353 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of A beta(1-40) amyloid fibril elongation. O'Nuallain B; Shivaprasad S; Kheterpal I; Wetzel R Biochemistry; 2005 Sep; 44(38):12709-18. PubMed ID: 16171385 [TBL] [Abstract][Full Text] [Related]
15. Facial symmetry in protein self-assembly. Mehta AK; Lu K; Childers WS; Liang Y; Dublin SN; Dong J; Snyder JP; Pingali SV; Thiyagarajan P; Lynn DG J Am Chem Soc; 2008 Jul; 130(30):9829-35. PubMed ID: 18593163 [TBL] [Abstract][Full Text] [Related]
16. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology. Marek P; Abedini A; Song B; Kanungo M; Johnson ME; Gupta R; Zaman W; Wong SS; Raleigh DP Biochemistry; 2007 Mar; 46(11):3255-61. PubMed ID: 17311418 [TBL] [Abstract][Full Text] [Related]
17. Oligopeptide-mediated acceleration of amyloid fibril formation of amyloid beta(Abeta) and alpha-synuclein fragment peptide (NAC). Kuroda Y; Maeda Y; Hanaoka H; Miyamoto K; Nakagawa T J Pept Sci; 2004 Jan; 10(1):8-17. PubMed ID: 14959887 [TBL] [Abstract][Full Text] [Related]
18. Self-assembly and hydrogelation of an amyloid peptide fragment. Krysmann MJ; Castelletto V; Kelarakis A; Hamley IW; Hule RA; Pochan DJ Biochemistry; 2008 Apr; 47(16):4597-605. PubMed ID: 18370402 [TBL] [Abstract][Full Text] [Related]
19. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment. Majzik A; Fülöp L; Csapó E; Bogár F; Martinek T; Penke B; Bíró G; Dékány I Colloids Surf B Biointerfaces; 2010 Nov; 81(1):235-41. PubMed ID: 20674288 [TBL] [Abstract][Full Text] [Related]
20. Aromaticity of Phenylalanine Residues Is Essential for Amyloid Formation by Alzheimer's Amyloid β-Peptide. Genji M; Yano Y; Hoshino M; Matsuzaki K Chem Pharm Bull (Tokyo); 2017; 65(7):668-673. PubMed ID: 28674340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]