These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 21060998)
1. Discriminating olive and non-olive oils using HPLC-CAD and chemometrics. de la Mata-Espinosa P; Bosque-Sendra JM; Bro R; Cuadros-Rodríguez L Anal Bioanal Chem; 2011 Feb; 399(6):2083-92. PubMed ID: 21060998 [TBL] [Abstract][Full Text] [Related]
2. Olive oil quantification of edible vegetable oil blends using triacylglycerols chromatographic fingerprints and chemometric tools. de la Mata-Espinosa P; Bosque-Sendra JM; Bro R; Cuadros-Rodríguez L Talanta; 2011 Jul; 85(1):177-82. PubMed ID: 21645687 [TBL] [Abstract][Full Text] [Related]
3. Discrimination and classification of extra virgin olive oil using a chemometric approach based on TMS-4,4'-desmetylsterols GC(FID) fingerprints of edible vegetable oils. Pérez-Castaño E; Medina-Rodríguez S; Bagur-González MG Food Chem; 2019 Feb; 274():518-525. PubMed ID: 30372973 [TBL] [Abstract][Full Text] [Related]
4. Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC-APCI-MS-MS. Fasciotti M; Pereira Netto AD Talanta; 2010 May; 81(3):1116-25. PubMed ID: 20298902 [TBL] [Abstract][Full Text] [Related]
5. Multivariate analysis of HT/GC-(IT)MS chromatographic profiles of triacylglycerol for classification of olive oil varieties. Ruiz-Samblás C; Cuadros-Rodríguez L; González-Casado A; Rodríguez García Fde P; de la Mata-Espinosa P; Bosque-Sendra JM Anal Bioanal Chem; 2011 Feb; 399(6):2093-103. PubMed ID: 21113580 [TBL] [Abstract][Full Text] [Related]
6. Blends of olive oil and seeds oils: characterisation and olive oil quantification using fatty acids composition and chemometric tools. Part II. Monfreda M; Gobbi L; Grippa A Food Chem; 2014 Feb; 145():584-92. PubMed ID: 24128518 [TBL] [Abstract][Full Text] [Related]
7. Fast-HPLC Fingerprinting to Discriminate Olive Oil from Other Edible Vegetable Oils by Multivariate Classification Methods. Jiménez-Carvelo AM; González-Casado A; Pérez-Castaño E; Cuadros-Rodríguez L J AOAC Int; 2017 Mar; 100(2):345-350. PubMed ID: 28079016 [TBL] [Abstract][Full Text] [Related]
8. Use of triacylglycerol profiles established by high performance liquid chromatography with ultraviolet-visible detection to predict the botanical origin of vegetable oils. Lerma-García MJ; Lusardi R; Chiavaro E; Cerretani L; Bendini A; Ramis-Ramos G; Simó-Alfonso EF J Chromatogr A; 2011 Oct; 1218(42):7521-7. PubMed ID: 21855883 [TBL] [Abstract][Full Text] [Related]
9. A new analytical method for quantification of olive and palm oil in blends with other vegetable edible oils based on the chromatographic fingerprints from the methyl-transesterified fraction. Jiménez-Carvelo AM; González-Casado A; Cuadros-Rodríguez L Talanta; 2017 Mar; 164():540-547. PubMed ID: 28107970 [TBL] [Abstract][Full Text] [Related]
10. Quantification of blending of olive oils and edible vegetable oils by triacylglycerol fingerprint gas chromatography and chemometric tools. Ruiz-Samblás C; Marini F; Cuadros-Rodríguez L; González-Casado A J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Dec; 910():71-7. PubMed ID: 22366282 [TBL] [Abstract][Full Text] [Related]
12. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection. Salghi R; Armbruster W; Schwack W Food Chem; 2014 Jun; 153():387-92. PubMed ID: 24491744 [TBL] [Abstract][Full Text] [Related]
13. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. Jabeur H; Zribi A; Makni J; Rebai A; Abdelhedi R; Bouaziz M J Agric Food Chem; 2014 May; 62(21):4893-904. PubMed ID: 24811341 [TBL] [Abstract][Full Text] [Related]
14. [Research on Rapid Discrimination of Edible Oil by ATR Infrared Spectroscopy]. Ma X; Yuan HF; Song CF; Hu AQ; Li XY; Zhao Z; Li XQ; Guo Zhen ; Zhu ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1879-84. PubMed ID: 26717744 [TBL] [Abstract][Full Text] [Related]
15. Profiling of triacylglycerols in plant oils by high-performance liquid chromatography-atmosphere pressure chemical ionization mass spectrometry using a novel mixed-mode column. Hu N; Wei F; Lv X; Wu L; Dong XY; Chen H J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Dec; 972():65-72. PubMed ID: 25444539 [TBL] [Abstract][Full Text] [Related]
16. Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry. Wei F; Ji SX; Hu N; Lv X; Dong XY; Feng YQ; Chen H J Chromatogr A; 2013 Oct; 1312():69-79. PubMed ID: 24034135 [TBL] [Abstract][Full Text] [Related]
17. One input-class and two input-class classifications for differentiating olive oil from other edible vegetable oils by use of the normal-phase liquid chromatography fingerprint of the methyl-transesterified fraction. Jiménez-Carvelo AM; Pérez-Castaño E; González-Casado A; Cuadros-Rodríguez L Food Chem; 2017 Apr; 221():1784-1791. PubMed ID: 27979162 [TBL] [Abstract][Full Text] [Related]
18. Analysis and classification of common vegetable oils. Pitts SJ; Thomson CI J Forensic Sci; 2003 Nov; 48(6):1293-7. PubMed ID: 14640273 [TBL] [Abstract][Full Text] [Related]
19. Analysis of olive oil and seed oil triglycerides by capillary gas chromatography as a tool for the detection of the adulteration of olive oil. Andrikopoulos NK; Giannakis IG; Tzamtzis V J Chromatogr Sci; 2001 Apr; 39(4):137-45. PubMed ID: 11318065 [TBL] [Abstract][Full Text] [Related]
20. [Benzo(a)pyrene contamination of vegetable oils]. Jedra M; Starski A; Gawarska H; Sawilska-Rautenstrauch D Rocz Panstw Zakl Hig; 2008; 59(2):131-8. PubMed ID: 18807910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]