These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 21061027)
1. Tools for phospho- and glycoproteomics of plasma membranes. Wiśniewski JR Amino Acids; 2011 Jul; 41(2):223-33. PubMed ID: 21061027 [TBL] [Abstract][Full Text] [Related]
2. Application of electrostatic repulsion hydrophilic interaction chromatography to the characterization of proteome, glycoproteome, and phosphoproteome using nano LC-MS/MS. Hao P; Zhang H; Sze SK Methods Mol Biol; 2011; 790():305-18. PubMed ID: 21948424 [TBL] [Abstract][Full Text] [Related]
3. Enrichment and preparation of plasma membrane proteins from Arabidopsis thaliana for global proteomic analysis using liquid chromatography-tandem mass spectrometry. Mitra SK; Clouse SD; Goshe MB Methods Mol Biol; 2009; 564():341-55. PubMed ID: 19544033 [TBL] [Abstract][Full Text] [Related]
4. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
5. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Salih E Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747 [TBL] [Abstract][Full Text] [Related]
6. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry. Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of the lymphocyte plasma membrane using cell surface biotinylation and solution-phase isoelectric focusing. Peirce MJ; Cope AP; Wait R Methods Mol Biol; 2009; 528():135-40. PubMed ID: 19153690 [TBL] [Abstract][Full Text] [Related]
8. Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Wu Y; Mechref Y; Klouckova I; Mayampurath A; Novotny MV; Tang H Rapid Commun Mass Spectrom; 2010 Apr; 24(7):965-72. PubMed ID: 20209665 [TBL] [Abstract][Full Text] [Related]
9. Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. Lund R; Leth-Larsen R; Jensen ON; Ditzel HJ J Proteome Res; 2009 Jun; 8(6):3078-90. PubMed ID: 19341246 [TBL] [Abstract][Full Text] [Related]
10. High-sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: application to biological studies. Jorge I; Casas EM; Villar M; Ortega-Pérez I; López-Ferrer D; Martínez-Ruiz A; Carrera M; Marina A; Martínez P; Serrano H; Cañas B; Were F; Gallardo JM; Lamas S; Redondo JM; García-Dorado D; Vázquez J J Mass Spectrom; 2007 Nov; 42(11):1391-403. PubMed ID: 17960563 [TBL] [Abstract][Full Text] [Related]
11. Improved membrane proteomics coverage of human embryonic stem cells by peptide IPG-IEF. McQuade LR; Schmidt U; Pascovici D; Stojanov T; Baker MS J Proteome Res; 2009 Dec; 8(12):5642-9. PubMed ID: 19899800 [TBL] [Abstract][Full Text] [Related]
12. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Thaysen-Andersen M; Packer NH Biochim Biophys Acta; 2014 Sep; 1844(9):1437-52. PubMed ID: 24830338 [TBL] [Abstract][Full Text] [Related]
13. Proteomic characterization of integral membrane proteins using thermostatted liquid chromatography coupled with tandem mass spectrometry. Moore SM; Wu CC Methods Mol Biol; 2012; 914():155-64. PubMed ID: 22976027 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative Standard using SDS-PAGE shotgun proteomics. Peng L; Kapp EA; McLauchlan D; Jordan TW Proteomics; 2011 Nov; 11(22):4376-84. PubMed ID: 21887821 [TBL] [Abstract][Full Text] [Related]
15. Peptide-based phosphoproteomics with immobilized metal ion chromatography. Nühse TS; Peck SC Methods Mol Biol; 2006; 323():431-6. PubMed ID: 16739597 [TBL] [Abstract][Full Text] [Related]
16. Applications of diagonal chromatography for proteome-wide characterization of protein modifications and activity-based analyses. Gevaert K; Impens F; Van Damme P; Ghesquière B; Hanoulle X; Vandekerckhove J FEBS J; 2007 Dec; 274(24):6277-89. PubMed ID: 18021238 [TBL] [Abstract][Full Text] [Related]
17. Thylakoid phosphoproteins: identification of phosphorylation sites. Rokka A; Aro EM; Vener AV Methods Mol Biol; 2011; 684():171-86. PubMed ID: 20960130 [TBL] [Abstract][Full Text] [Related]
18. The identification and characterization of membranome components. Ghosh D; Beavis RC; Wilkins JA J Proteome Res; 2008 Apr; 7(4):1572-83. PubMed ID: 18290606 [TBL] [Abstract][Full Text] [Related]
19. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. Elortza F; Mohammed S; Bunkenborg J; Foster LJ; Nühse TS; Brodbeck U; Peck SC; Jensen ON J Proteome Res; 2006 Apr; 5(4):935-43. PubMed ID: 16602701 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine. Li QR; Fan KX; Li RX; Dai J; Wu CC; Zhao SL; Wu JR; Shieh CH; Zeng R Rapid Commun Mass Spectrom; 2010 Mar; 24(6):823-32. PubMed ID: 20187088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]