These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21061102)

  • 1. Monitoring fluidized bed drying of pharmaceutical granules.
    Briens L; Bojarra M
    AAPS PharmSciTech; 2010 Dec; 11(4):1612-8. PubMed ID: 21061102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drying behavior of a horizontal vibrated fluidized bed dryer for continuous manufacturing.
    Kiricenko K; Kleinebudde P
    Pharm Dev Technol; 2023 Jun; 28(5):440-451. PubMed ID: 37078894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inline acoustic monitoring to determine fluidized bed performance during pharmaceutical coating.
    Carter A; Briens L
    Int J Pharm; 2018 Oct; 549(1-2):293-298. PubMed ID: 30063939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach.
    Aziz H; Ahsan SN; De Simone G; Gao Y; Chaudhuri B
    AAPS PharmSciTech; 2022 Jan; 23(1):59. PubMed ID: 35059893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review.
    Mortier ST; De Beer T; Gernaey KV; Remon JP; Vervaet C; Nopens I
    Eur J Pharm Biopharm; 2011 Oct; 79(2):205-25. PubMed ID: 21664970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring high-shear granulation using sound and vibration measurements.
    Briens L; Daniher D; Tallevi A
    Int J Pharm; 2007 Feb; 331(1):54-60. PubMed ID: 17045765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.
    De Leersnyder F; Vanhoorne V; Bekaert H; Vercruysse J; Ghijs M; Bostijn N; Verstraeten M; Cappuyns P; Van Assche I; Vander Heyden Y; Ziemons E; Remon JP; Nopens I; Vervaet C; De Beer T
    Eur J Pharm Sci; 2018 Mar; 115():223-232. PubMed ID: 29374528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of metronidazole particle properties on granules prepared in a high-shear mixer-granulator.
    Di Martino P; Censi R; Malaj L; Martelli S; Joiris E; Barthélémy C
    Drug Dev Ind Pharm; 2007 Feb; 33(2):121-31. PubMed ID: 17454043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Semicontinuous Fluid Bed Drying of Pharmaceutical Granules With Respect to Granule Size.
    Ghijs M; Schäfer E; Kumar A; Cappuyns P; Van Assche I; De Leersnyder F; Vanhoorne V; De Beer T; Nopens I
    J Pharm Sci; 2019 Jun; 108(6):2094-2101. PubMed ID: 30668940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fluidisation activity on end-point detection of a fluid bed drying process.
    Lipsanen T; Antikainen O; Räikkönen H; Airaksinen S; Yliruusi J
    Int J Pharm; 2008 Jun; 357(1-2):37-43. PubMed ID: 18329199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface responses and desirability functions to determine optimal granulation domains.
    Giry K; Viana M; Genty M; Wüthrich P; Chulia D
    Drug Dev Ind Pharm; 2010 Sep; 36(9):1016-26. PubMed ID: 20818964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of single pot and multiphase granulation. Part 2: Effect of the drying process on granules manufactured in a single pot granulator and dried either in situ or in a fluid bed dryer.
    Giry K; Viana M; Genty M; Louvet F; Wüthrich P; Chulia D
    Pharm Dev Technol; 2009; 14(2):149-58. PubMed ID: 19519187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the granulation behavior of three different excipients in a laboratory fluidized bed granulator using statistical methods.
    Schinzinger O; Schmidt PC
    Pharm Dev Technol; 2005; 10(2):175-88. PubMed ID: 15926666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave drying of granules containing a moisture-sensitive drug: a promising alternative to fluid bed and hot air oven drying.
    Chee SN; Johansen AL; Gu L; Karlsen J; Heng PW
    Chem Pharm Bull (Tokyo); 2005 Jul; 53(7):770-5. PubMed ID: 15997132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion model for fluidized-bed drying.
    Zoglio MA; Streng WH; Carstensen JT
    J Pharm Sci; 1975 Nov; 64(11):1869-73. PubMed ID: 1195120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The consequences of granulate heterogeneity towards breakage and attrition upon fluid-bed drying.
    Nieuwmeyer F; van der Voort Maarschalk K; Vromans H
    Eur J Pharm Biopharm; 2008 Sep; 70(1):402-8. PubMed ID: 18440211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cracking the code: Spatial heterogeneity as the missing piece for modeling granular fluidized bed drying.
    Vandeputte T; Ghijs M; De Beer T; Nopens I
    Int J Pharm; 2024 May; 657():124135. PubMed ID: 38643808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Optimization of a Wet Granulation Process at Elevated Temperature for a Poorly Compactible Drug Using Twin Screw Extruder for Continuous Manufacturing.
    Meena AK; Desai D; Serajuddin AT
    J Pharm Sci; 2017 Feb; 106(2):589-600. PubMed ID: 27890244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on the real-time monitoring of a fluid bed drying process of extruded granules using near-infrared spectroscopy and audible acoustic emission.
    Aoki H; Hattori Y; Sasaki T; Otsuka M
    Int J Pharm; 2022 May; 619():121689. PubMed ID: 35331834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models.
    Fonteyne M; Gildemyn D; Peeters E; Mortier ST; Vercruysse J; Gernaey KV; Vervaet C; Remon JP; Nopens I; De Beer T
    Eur J Pharm Biopharm; 2014 Aug; 87(3):616-28. PubMed ID: 24613541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.