These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 2106119)
1. Salicylate, mefenamate, meclofenamate, and quinine on cochlear potentials. Puel JL; Bobbin RP; Fallon M Otolaryngol Head Neck Surg; 1990 Jan; 102(1):66-73. PubMed ID: 2106119 [TBL] [Abstract][Full Text] [Related]
2. Nimodipine, an L-channel Ca2+ antagonist, reverses the negative summating potential recorded from the guinea pig cochlea. Bobbin RP; Jastreboff PJ; Fallon M; Littman T Hear Res; 1990 Jul; 46(3):277-87. PubMed ID: 2168361 [TBL] [Abstract][Full Text] [Related]
3. Effect of salicylate on electrically evoked otoacoustic emissions elicited in the first and third turns of the guinea pig cochlea. Fujimura K; Yoshida M; Goto K; Mori T; Suzuki H Acta Otolaryngol; 2004 Oct; 124(8):896-901. PubMed ID: 15513523 [TBL] [Abstract][Full Text] [Related]
4. Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig. Fitzgerald JJ; Robertson D; Johnstone BM Hear Res; 1993 May; 67(1-2):147-56. PubMed ID: 8340266 [TBL] [Abstract][Full Text] [Related]
5. Magnitude of the negative summating potential varies with perilymph calcium levels. Bobbin RP; Fallon M; Kujawa SG Hear Res; 1991 Nov; 56(1-2):101-10. PubMed ID: 1663103 [TBL] [Abstract][Full Text] [Related]
6. Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Kujawa SG; Fallon M; Bobbin RP Hear Res; 1992 Dec; 64(1):73-80. PubMed ID: 1490903 [TBL] [Abstract][Full Text] [Related]
7. Effect of intracochlear aminooxyacetic acid on cochlear potentials and endolymph composition. Robbin RP; Gondra MI Ann Otol Rhinol Laryngol; 1975; 84(2 PART 1):192-7. PubMed ID: 1124907 [TBL] [Abstract][Full Text] [Related]
8. Antagonism by fenamates of prostaglandin action in guinea-pig and human alimentary muscle. Bennett A; Pratt D; Sanger GJ Br J Pharmacol; 1980 Mar; 68(3):357-62. PubMed ID: 7052332 [TBL] [Abstract][Full Text] [Related]
9. Summating potential in the guinea pig cochlea after perilymphatic perfusion with arginine-vasopressin. Lohuis PJ; Klis SF; van Emst MG; Smoorenburg GF Acta Otolaryngol; 2001 Dec; 121(8):896-901. PubMed ID: 11813891 [TBL] [Abstract][Full Text] [Related]
10. [The electro-physiological change of guinea pig cochlea caused by intracochlear perfusion of sodium salicylate]. Zhang S; Robertson D Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2003 Sep; 17(9):551-3. PubMed ID: 14658194 [TBL] [Abstract][Full Text] [Related]
11. Comparative actions of salicylate on the amphibian lateral line and guinea pig cochlea. Puel JL; Bledsoe SC; Bobbin RP; Ceasar G; Fallon M Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(1):73-80. PubMed ID: 2567228 [TBL] [Abstract][Full Text] [Related]
12. The vascular component of sodium salicylate ototoxicity in the guinea pig. Didier A; Miller JM; Nuttall AL Hear Res; 1993 Sep; 69(1-2):199-206. PubMed ID: 8226340 [TBL] [Abstract][Full Text] [Related]
13. Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials. Zhang SY; Robertson D; Yates G; Everett A J Neurophysiol; 1999 Dec; 82(6):3307-15. PubMed ID: 10601462 [TBL] [Abstract][Full Text] [Related]
14. Effects of endolymphatic and perilymphatic application of salicylate in the pigeon. I: Single fiber activity and cochlear potentials. Shehata-Dieler WE; Richter CP; Dieler R; Klinke R Hear Res; 1994 Apr; 74(1-2):77-84. PubMed ID: 8040101 [TBL] [Abstract][Full Text] [Related]
15. Tetraethylammonium effects on cochlear potentials in the guinea pig. van Emst MG; Klis SF; Smoorenburg GF Hear Res; 1995 Aug; 88(1-2):27-35. PubMed ID: 8576000 [TBL] [Abstract][Full Text] [Related]
16. Concentration-Response Relationship of Hearing Impairment Caused by Quinine and Salicylate: Pharmacological Similarities but Different Molecular Mechanisms. Alvan G; Berninger E; Gustafsson LL; Karlsson KK; Paintaud G; Wakelkamp M Basic Clin Pharmacol Toxicol; 2017 Jan; 120(1):5-13. PubMed ID: 27398982 [TBL] [Abstract][Full Text] [Related]
17. Effects of K(+)-channel blockers on cochlear potentials in the guinea pig. Wang J; Li QH; Dong WJ; Chen JS Hear Res; 1993 Aug; 68(2):152-8. PubMed ID: 8407601 [TBL] [Abstract][Full Text] [Related]
18. Quinine-induced alterations of electrically evoked otoacoustic emissions and cochlear potentials in guinea pigs. Zheng J; Ren T; Parthasarathi A; Nuttall AL Hear Res; 2001 Apr; 154(1-2):124-34. PubMed ID: 11423223 [TBL] [Abstract][Full Text] [Related]
19. Link between functional and morphological changes in the inner ear--functional changes produced by ototoxic agents and their interactions. Brown RD; Henley CM; Penny JE; Kupetz S Arch Toxicol Suppl; 1985; 8():240-50. PubMed ID: 3913403 [TBL] [Abstract][Full Text] [Related]
20. Effect of perilymphatic air perfusion on cochlear potentials. Kobayashi T; Itoh Z; Sakurada T; Shiga N; Takasaka T Acta Otolaryngol; 1990; 110(3-4):209-16. PubMed ID: 2239209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]