These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21061424)

  • 21. Prediction of flocculation ability of brewing yeast inoculates by flow cytometry, proteome analysis, and mRNA profiling.
    Heine F; Stahl F; Sträuber H; Wiacek C; Benndorf D; Repenning C; Schmidt F; Scheper T; von Bergen M; Harms H; Müller S
    Cytometry A; 2009 Feb; 75(2):140-7. PubMed ID: 19072835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction networks: lessons from large-scale studies in yeast.
    Cagney G
    Proteomics; 2009 Oct; 9(20):4799-811. PubMed ID: 19743423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic analysis of Saccharomyces cerevisiae.
    Pham TK; Wright PC
    Expert Rev Proteomics; 2007 Dec; 4(6):793-813. PubMed ID: 18067417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein network inference from multiple genomic data: a supervised approach.
    Yamanishi Y; Vert JP; Kanehisa M
    Bioinformatics; 2004 Aug; 20 Suppl 1():i363-70. PubMed ID: 15262821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection.
    Chong YT; Cox MJ; Andrews B
    Adv Exp Med Biol; 2012; 736():169-78. PubMed ID: 22161327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae.
    Westergaard SL; Oliveira AP; Bro C; Olsson L; Nielsen J
    Biotechnol Bioeng; 2007 Jan; 96(1):134-45. PubMed ID: 16878332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae.
    Helbig AO; Daran-Lapujade P; van Maris AJ; de Hulster EA; de Ridder D; Pronk JT; Heck AJ; Slijper M
    Mol Biosyst; 2011 Dec; 7(12):3316-26. PubMed ID: 21984188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteome survey reveals modularity of the yeast cell machinery.
    Gavin AC; Aloy P; Grandi P; Krause R; Boesche M; Marzioch M; Rau C; Jensen LJ; Bastuck S; Dümpelfeld B; Edelmann A; Heurtier MA; Hoffman V; Hoefert C; Klein K; Hudak M; Michon AM; Schelder M; Schirle M; Remor M; Rudi T; Hooper S; Bauer A; Bouwmeester T; Casari G; Drewes G; Neubauer G; Rick JM; Kuster B; Bork P; Russell RB; Superti-Furga G
    Nature; 2006 Mar; 440(7084):631-6. PubMed ID: 16429126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capturing cellular machines by systematic screens of protein complexes.
    Gagneur J; David L; Steinmetz LM
    Trends Microbiol; 2006 Aug; 14(8):336-9. PubMed ID: 16782340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.
    Levy ED; Kowarzyk J; Michnick SW
    Cell Rep; 2014 May; 7(4):1333-40. PubMed ID: 24813894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions.
    Helbig AO; de Groot MJ; van Gestel RA; Mohammed S; de Hulster EA; Luttik MA; Daran-Lapujade P; Pronk JT; Heck AJ; Slijper M
    Proteomics; 2009 Oct; 9(20):4787-98. PubMed ID: 19750512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Logical analysis of the budding yeast cell cycle.
    Irons DJ
    J Theor Biol; 2009 Apr; 257(4):543-59. PubMed ID: 19185585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM; Tan Y; Yuan YJ
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of D10-Leu metabolic labeling coupled with MALDI-MS analysis in studying the response of the yeast proteome to H2O2 challenge.
    Jiang H; English AM
    J Proteome Res; 2006 Oct; 5(10):2539-46. PubMed ID: 17022625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable isotope-coded affinity tag reagents.
    Flory MR; Lee H; Bonneau R; Mallick P; Serikawa K; Morris DR; Aebersold R
    Proteomics; 2006 Dec; 6(23):6146-57. PubMed ID: 17133367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of continuous culture in systems biology investigations.
    Winder CL; Lanthaler K
    Methods Enzymol; 2011; 500():261-75. PubMed ID: 21943902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity.
    Braunewell S; Bornholdt S
    J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systems biology of AGC kinases in fungi.
    Sobko A
    Sci STKE; 2006 Sep; 2006(352):re9. PubMed ID: 16971477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Yeast Systems Biology Network: mating communities.
    Hohmann S
    Curr Opin Biotechnol; 2005 Jun; 16(3):356-60. PubMed ID: 15961037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.