BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21061642)

  • 1. [Resource availability and its role in development of invasion processes].
    Kriksunov EA; Bobyrev AE; Burmenskiĭ VA
    Zh Obshch Biol; 2010; 71(5):436-51. PubMed ID: 21061642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Invasion of an intermediate predator: the dynamics of fish populations in the mathematical model of a trophic chain (as applied to the Syamozero lake)].
    Gonik MM; Bobyrev AE; Burmenskiĭ VA; Kriksunov EA; Li BL; Malchow H; Medvinskiĭ AB; Sterligova OP
    Biofizika; 2007; 52(4):760-8. PubMed ID: 17907422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased benthic algal primary production in response to the invasive zebra mussel (Dreissena polymorpha) in a productive ecosystem, Oneida Lake, New York.
    Cecala RK; Mayer CM; Schulz KL; Mills EL
    J Integr Plant Biol; 2008 Nov; 50(11):1452-66. PubMed ID: 19017132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting the spread of invasive rainbow smelt in the Laurentian Great Lakes region of North America.
    Mercado-Silva N; Olden JD; Maxted JT; Hrabik TR; Vander Zanden MJ
    Conserv Biol; 2006 Dec; 20(6):1740-9. PubMed ID: 17181809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The role of fish parasites in fresh-water ecosystems exemplified by a parasite of the smelt (Osmerus eperlanus)].
    Ieshko EP; Evseeva NV; Sterligova OP
    Parazitologiia; 2000; 34(2):118-24. PubMed ID: 10862398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trophic interference by Salmo trutta on Aplochiton zebra and Aplochiton taeniatus in southern Patagonian lakes.
    Elgueta A; González J; Ruzzante DE; Walde SJ; Habit E
    J Fish Biol; 2013 Feb; 82(2):430-43. PubMed ID: 23398060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular ecology of zebra mussel invasions.
    May GE; Gelembiuk GW; Panov VE; Orlova MI; Lee CE
    Mol Ecol; 2006 Apr; 15(4):1021-31. PubMed ID: 16599964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation of food-web interactions leading to rainbow smelt Osmerus mordax dominance in Sparkling Lake, Wisconsin.
    Roth BM; Hrabik TR; Solomon CT; Mercado-Silva N; Kitchell JF
    J Fish Biol; 2010 Oct; 77(6):1379-405. PubMed ID: 21039511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microevolutionary aspects of morphological variability and specificity of cestodes by the example of Proteocephalus longicollis (Zeder, 1800) (Proteocephalidae), a parasite of Coregonids].
    Anikieva LV; Ieshko EP
    Parazitologiia; 2010; 44(3):217-25. PubMed ID: 20795485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allee effect and control of lake system invasion.
    Potapov AB; Lewis MA
    Bull Math Biol; 2008 Jul; 70(5):1371-97. PubMed ID: 18317845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver contamination on abiotic and biotic compartments of Nahuel Huapi National Park lakes, Patagonia, Argentina.
    Guevara SR; Arribére M; Bubach D; Vigliano P; Rizzo A; Alonso M; Sánchez R
    Sci Total Environ; 2005 Jan; 336(1-3):119-34. PubMed ID: 15589254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the spread of aquatic invaders: insight from 200 years of invasion by zebra mussels.
    Karatayev AY; Burlakova LE; Mastitsky SE; Padilla DK
    Ecol Appl; 2015 Mar; 25(2):430-40. PubMed ID: 26263665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Divergence of Chlorophyll Dynamics in the Naroch Lakes].
    Adamovich BV; Kovalevskaya RZ; Radchikova NP; Zhukova TV; Mikheyeva TM; Medvinsky AB; Nuriyeva NI; Rusakov AV
    Biofizika; 2015; 60(4):769-76. PubMed ID: 26394477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Structure and function of pelagic zooplankton in various types of lakes (using the example of small lakes in northwestern Russia].
    Ivanova MB
    Zh Obshch Biol; 2001; 62(6):512-24. PubMed ID: 11871268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth?
    Bykova O; Laursen A; Bostan V; Bautista J; McCarthy L
    Sci Total Environ; 2006 Dec; 371(1-3):362-72. PubMed ID: 17011023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Present status and changes of the phytoplankton community after invasion of Neosalanx taihuensis since 1982 in a deep oligotrophic plateau lake, Lake Fuxian in the subtropical China.
    Zhang X; Xie P; Chen FZ; Li YL; Li SX; Guo NC; Qin JH
    J Environ Sci (China); 2005; 17(3):389-94. PubMed ID: 16083109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The ecological mechanisms of the formation of macrobenthos communities in the coastal area of small diverse lakes].
    Ivanov VK
    Zh Obshch Biol; 2000; 61(3):305-14. PubMed ID: 10863366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a cDNA microarray of zebra mussel (Dreissena polymorpha) foot and its use in understanding the early stage of underwater adhesion.
    Xu W; Faisal M
    Gene; 2009 May; 436(1-2):71-80. PubMed ID: 19393183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource switching in fish following a major food web disruption.
    Rennie MD; Sprules WG; Johnson TB
    Oecologia; 2009 Apr; 159(4):789-802. PubMed ID: 19214590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.
    Peyer SM; Hermanson JC; Lee CE
    J Exp Biol; 2010 Aug; 213(Pt 15):2602-9. PubMed ID: 20639421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.