These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21062044)

  • 1. Effect of Aeromonas hydrophila on reductive dechlorination of DDTs by zero-valent iron.
    Cao F; Li FB; Liu TX; Huang DY; Wu CY; Feng CH; Li XM
    J Agric Food Chem; 2010 Dec; 58(23):12366-72. PubMed ID: 21062044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS).
    Cao F; Liu TX; Wu CY; Li FB; Li XM; Yu HY; Tong H; Chen MJ
    J Agric Food Chem; 2012 Nov; 60(45):11238-44. PubMed ID: 23095105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS).
    Liu C; Xu X; Fan J
    J Environ Sci (China); 2015 Dec; 38():87-94. PubMed ID: 26702971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.
    Tao L; Zhu ZK; Li FB; Wang SL
    Chemosphere; 2017 Nov; 187():43-51. PubMed ID: 28834771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.
    Li FB; Li XM; Zhou SG; Zhuang L; Cao F; Huang DY; Xu W; Liu TX; Feng CH
    Environ Pollut; 2010 May; 158(5):1733-40. PubMed ID: 20031285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.
    Chen M; Cao F; Li F; Liu C; Tong H; Wu W; Hu M
    J Agric Food Chem; 2013 Mar; 61(9):2224-33. PubMed ID: 23402620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of zero-valent iron and carbonaceous materials for reduction of DDT.
    Kopinke FD; Sühnholz S; Georgi A; Mackenzie K
    Chemosphere; 2020 Aug; 253():126712. PubMed ID: 32302905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of the interaction between iron oxide and electron donor substances on 1,1,1-trichloro- 2, 2-bis (p-chlorophenyl) ethane ( DDT) reductive dechlorination in hydragric acrisols].
    Liu CY; Xu XH; Wang Z; Yao TY
    Huan Jing Ke Xue; 2014 Nov; 35(11):4298-304. PubMed ID: 25639109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of zero-valent iron (Fe0) and temperature on the transformation of DDT and its metabolites in lake sediment.
    Eggen T; Majcherczyk A
    Chemosphere; 2006 Feb; 62(7):1116-25. PubMed ID: 16087216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi.
    Purnomo AS; Kamei I; Kondo R
    J Biosci Bioeng; 2008 Jun; 105(6):614-21. PubMed ID: 18640600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron.
    Cong X; Xue N; Wang S; Li K; Li F
    Sci Total Environ; 2010 Jul; 408(16):3418-23. PubMed ID: 20471666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of DDTs contaminated soil in a novel Fenton-like system with zero-valent iron.
    Cao M; Wang L; Wang L; Chen J; Lu X
    Chemosphere; 2013 Feb; 90(8):2303-8. PubMed ID: 23102698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic transformation of DDT in aqueous solutions.
    Pirnie EF; Talley JW; Hundal LS
    Chemosphere; 2006 Nov; 65(9):1576-82. PubMed ID: 16678884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.
    Suhara H; Adachi A; Kamei I; Maekawa N
    Biodegradation; 2011 Nov; 22(6):1075-86. PubMed ID: 21380735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study.
    Zhu C; Fang G; Dionysiou DD; Liu C; Gao J; Qin W; Zhou D
    J Hazard Mater; 2016 Oct; 316():232-41. PubMed ID: 27236432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.
    Jin X; Wang F; Gu C; Yang X; Kengara FO; Bian Y; Song Y; Jiang X
    Chemosphere; 2015 Nov; 138():18-24. PubMed ID: 26025430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of O
    Gunawardana B; Swedlund PJ; Singhal N
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):27687-27698. PubMed ID: 31338765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Donor Substances and Iron Oxides Stimulate Anaerobic Dechlorination of DDT in a Slurry System with Hydragric Acrisols.
    Liu CY; Cade-Menun BJ; Xu XH; Fan JL
    J Environ Qual; 2016 Jan; 45(1):331-40. PubMed ID: 26828189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide.
    Ding K; Xu W
    Environ Sci Technol; 2016 Dec; 50(23):12976-12983. PubMed ID: 27934256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of new bacterial transformation products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by gas chromatography/mass spectrometry.
    Massé R; Lalanne D; Messier F; Sylvestre M
    Biomed Environ Mass Spectrom; 1989 Sep; 18(9):741-52. PubMed ID: 2790260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.