BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1185 related articles for article (PubMed ID: 21062159)

  • 21. Novel mechanisms of action of classical chemotherapeutic agents on sphingolipid pathways.
    Hajj C; Becker-Flegler KA; Haimovitz-Friedman A
    Biol Chem; 2015 Jun; 396(6-7):669-79. PubMed ID: 25719313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of autophagy and its associated cell death by "sphingolipid rheostat": reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway.
    Taniguchi M; Kitatani K; Kondo T; Hashimoto-Nishimura M; Asano S; Hayashi A; Mitsutake S; Igarashi Y; Umehara H; Takeya H; Kigawa J; Okazaki T
    J Biol Chem; 2012 Nov; 287(47):39898-910. PubMed ID: 23035115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting the conversion of ceramide to sphingosine 1-phosphate as a novel strategy for cancer therapy.
    Huwiler A; Zangemeister-Wittke U
    Crit Rev Oncol Hematol; 2007 Aug; 63(2):150-9. PubMed ID: 17560117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets.
    Melendez AJ
    Biochim Biophys Acta; 2008 Jan; 1784(1):66-75. PubMed ID: 17913601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells.
    Baran Y; Salas A; Senkal CE; Gunduz U; Bielawski J; Obeid LM; Ogretmen B
    J Biol Chem; 2007 Apr; 282(15):10922-34. PubMed ID: 17303574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells.
    Berdyshev EV; Gorshkova I; Skobeleva A; Bittman R; Lu X; Dudek SM; Mirzapoiazova T; Garcia JG; Natarajan V
    J Biol Chem; 2009 Feb; 284(9):5467-77. PubMed ID: 19119142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane.
    Canals D; Jenkins RW; Roddy P; Hernández-Corbacho MJ; Obeid LM; Hannun YA
    J Biol Chem; 2010 Oct; 285(42):32476-85. PubMed ID: 20679347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling.
    Chalfant CE; Spiegel S
    J Cell Sci; 2005 Oct; 118(Pt 20):4605-12. PubMed ID: 16219683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rewiring Endothelial Sphingolipid Metabolism to Favor S1P Over Ceramide Protects From Coronary Atherosclerosis.
    Manzo OL; Nour J; Sasset L; Marino A; Rubinelli L; Palikhe S; Smimmo M; Hu Y; Bucci MR; Borczuk A; Elemento O; Freed JK; Norata GD; Di Lorenzo A
    Circ Res; 2024 Apr; 134(8):990-1005. PubMed ID: 38456287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Role of Fatty Acids in Ceramide Pathways and Their Influence on Hypothalamic Regulation of Energy Balance: A Systematic Review.
    Reginato A; Veras ACC; Baqueiro MDN; Panzarin C; Siqueira BP; Milanski M; Lisboa PC; Torsoni AS
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel agents targeting bioactive sphingolipids for the treatment of cancer.
    Adan-Gokbulut A; Kartal-Yandim M; Iskender G; Baran Y
    Curr Med Chem; 2013; 20(1):108-22. PubMed ID: 23244584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sphingolipids in macroautophagy.
    Lavieu G; Scarlatti F; Sala G; Carpentier S; Levade T; Ghidoni R; Botti J; Codogno P
    Methods Mol Biol; 2008; 445():159-73. PubMed ID: 18425450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sphingolipid signaling pathways as potential therapeutic targets in gliomas.
    Van Brocklyn JR
    Mini Rev Med Chem; 2007 Oct; 7(10):984-90. PubMed ID: 17979800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An overview of sphingolipid metabolism: from synthesis to breakdown.
    Gault CR; Obeid LM; Hannun YA
    Adv Exp Med Biol; 2010; 688():1-23. PubMed ID: 20919643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities.
    Blaho VA
    Adv Exp Med Biol; 2020; 1274():101-135. PubMed ID: 32894509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer.
    Hait NC; Maiti A
    Mediators Inflamm; 2017; 2017():4806541. PubMed ID: 29269995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tamoxifen regulation of sphingolipid metabolism--Therapeutic implications.
    Morad SA; Cabot MC
    Biochim Biophys Acta; 2015 Sep; 1851(9):1134-45. PubMed ID: 25964209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Updates on sphingolipids: Spotlight on retinopathy.
    Shiwani HA; Elfaki MY; Memon D; Ali S; Aziz A; Egom EE
    Biomed Pharmacother; 2021 Nov; 143():112197. PubMed ID: 34560541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells.
    Kao LP; Morad SAF; Davis TS; MacDougall MR; Kassai M; Abdelmageed N; Fox TE; Kester M; Loughran TP; Abad JL; Fabrias G; Tan SF; Feith DJ; Claxton DF; Spiegel S; Fisher-Wellman KH; Cabot MC
    J Lipid Res; 2019 Sep; 60(9):1590-1602. PubMed ID: 31363040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis.
    Le Stunff H; Galve-Roperh I; Peterson C; Milstien S; Spiegel S
    J Cell Biol; 2002 Sep; 158(6):1039-49. PubMed ID: 12235122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 60.