BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21062161)

  • 1. Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis.
    Narayan G; Murty VV
    Future Oncol; 2010 Oct; 6(10):1643-52. PubMed ID: 21062161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression.
    Scotto L; Narayan G; Nandula SV; Arias-Pulido H; Subramaniyam S; Schneider A; Kaufmann AM; Wright JD; Pothuri B; Mansukhani M; Murty VV
    Genes Chromosomes Cancer; 2008 Sep; 47(9):755-65. PubMed ID: 18506748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha.
    Scotto L; Narayan G; Nandula SV; Subramaniyam S; Kaufmann AM; Wright JD; Pothuri B; Mansukhani M; Schneider A; Arias-Pulido H; Murty VV
    Mol Cancer; 2008 Jun; 7():58. PubMed ID: 18559093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.
    Kloth JN; Oosting J; van Wezel T; Szuhai K; Knijnenburg J; Gorter A; Kenter GG; Fleuren GJ; Jordanova ES
    BMC Genomics; 2007 Feb; 8():53. PubMed ID: 17311676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes.
    Narayan G; Bourdon V; Chaganti S; Arias-Pulido H; Nandula SV; Rao PH; Gissmann L; Dürst M; Schneider A; Pothuri B; Mansukhani M; Basso K; Chaganti RS; Murty VV
    Genes Chromosomes Cancer; 2007 Apr; 46(4):373-84. PubMed ID: 17243165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer.
    Narayan G; Scotto L; Neelakantan V; Kottoor SH; Wong AH; Loke SL; Mansukhani M; Pothuri B; Wright JD; Kaufmann AM; Schneider A; Arias-Pulido H; Tao Q; Murty VV
    Genes Chromosomes Cancer; 2009 Nov; 48(11):983-92. PubMed ID: 19681120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy.
    Kasaian K; Wiseman SM; Walker BA; Schein JE; Zhao Y; Hirst M; Moore RA; Mungall AJ; Marra MA; Jones SJ
    BMC Cancer; 2015 Dec; 15():984. PubMed ID: 26680454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation data-based molecular subtype classification related to the prognosis of patients with cervical cancer.
    Li C; Ke J; Liu J; Su J
    J Cell Biochem; 2020 Mar; 121(3):2713-2724. PubMed ID: 31680300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression.
    Narayan G; Goparaju C; Arias-Pulido H; Kaufmann AM; Schneider A; Dürst M; Mansukhani M; Pothuri B; Murty VV
    Mol Cancer; 2006 May; 5():16. PubMed ID: 16700909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study.
    Medina-Martinez I; Barrón V; Roman-Bassaure E; Juárez-Torres E; Guardado-Estrada M; Espinosa AM; Bermudez M; Fernández F; Venegas-Vega C; Orozco L; Zenteno E; Kofman S; Berumen J
    PLoS One; 2014; 9(5):e97842. PubMed ID: 24879114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ganglioside biosynthesis genetic polymorphism in cervical cancer development.
    Danolic D; Heffer M; Wagner J; Skrlec I; Alvir I; Mamic I; Susnjar L; Banovic M; Danolić D; Puljiz M
    J Obstet Gynaecol; 2020 Nov; 40(8):1127-1132. PubMed ID: 31847655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic comparison of copy number alterations in four types of female cancer.
    Kaveh F; Baumbusch LO; Nebdal D; Børresen-Dale AL; Lingjærde OC; Edvardsen H; Kristensen VN; Solvang HK
    BMC Cancer; 2016 Nov; 16(1):913. PubMed ID: 27876019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HPV-related methylation-based reclassification and risk stratification of cervical cancer.
    Yang S; Wu Y; Wang S; Xu P; Deng Y; Wang M; Liu K; Tian T; Zhu Y; Li N; Zhou L; Dai Z; Kang H
    Mol Oncol; 2020 Sep; 14(9):2124-2141. PubMed ID: 32408396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic inactivation of TRAIL decoy receptors at 8p12-21.3 commonly deleted region confers sensitivity to Apo2L/trail-Cisplatin combination therapy in cervical cancer.
    Narayan G; Xie D; Ishdorj G; Scotto L; Mansukhani M; Pothuri B; Wright JD; Kaufmann AM; Schneider A; Arias-Pulido H; Murty VV
    Genes Chromosomes Cancer; 2016 Feb; 55(2):177-89. PubMed ID: 26542757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene discovery in cervical cancer : towards diagnostic and therapeutic biomarkers.
    Martin CM; Kehoe L; Spillane CO; O'Leary JJ
    Mol Diagn Ther; 2007; 11(5):277-90. PubMed ID: 17963416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Epigenetic alterations in cervical cancer progression].
    Ríos-Romero M; Soto-Valladares AG; Piña-Sánchez P
    Rev Med Inst Mex Seguro Soc; 2015; 53 Suppl 2():S212-7. PubMed ID: 26462519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Genetic, Epigenetic, and Transcriptional Profiling Identifies Molecular Pathways in the Development of Laterally Spreading Tumors.
    Hesson LB; Ng B; Zarzour P; Srivastava S; Kwok CT; Packham D; Nunez AC; Beck D; Ryan R; Dower A; Ford CE; Pimanda JE; Sloane MA; Hawkins NJ; Bourke MJ; Wong JW; Ward RL
    Mol Cancer Res; 2016 Dec; 14(12):1217-1228. PubMed ID: 27671336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide somatic copy number alteration analysis and database construction for cervical cancer.
    Luo H; Xu X; Yang J; Wang K; Wang C; Yang P; Cai H
    Mol Genet Genomics; 2020 May; 295(3):765-773. PubMed ID: 31901979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.