These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes. Kodama A; Sakai H; Matsuura S; Murakami M; Murai A; Mori T; Maruo K; Kimura T; Masegi T; Yanai T BMC Cancer; 2009 Oct; 9():363. PubMed ID: 19825192 [TBL] [Abstract][Full Text] [Related]
4. Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization. Gorden BH; Kim JH; Sarver AL; Frantz AM; Breen M; Lindblad-Toh K; O'Brien TD; Sharkey LC; Modiano JF; Dickerson EB Am J Pathol; 2014 Apr; 184(4):985-995. PubMed ID: 24525151 [TBL] [Abstract][Full Text] [Related]
5. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment. Kim JH; Frantz AM; Anderson KL; Graef AJ; Scott MC; Robinson S; Sharkey LC; O Brien TD; Dickerson EB; Modiano JF Exp Cell Res; 2014 Apr; 323(1):155-164. PubMed ID: 24582862 [TBL] [Abstract][Full Text] [Related]
6. Machine learning application identifies novel gene signatures from transcriptomic data of spontaneous canine hemangiosarcoma. Cheng N; Schulte AJ; Santosa F; Kim JH Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33078825 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of prostate specific membrane antigen by canine hemangiosarcoma cells provides opportunity for the molecular detection of disease burdens within hemorrhagic body cavity effusions. Dowling M; Samuelson J; Fadl-Alla B; Pondenis HC; Byrum M; Barger AM; Fan TM PLoS One; 2019; 14(1):e0210297. PubMed ID: 30601866 [TBL] [Abstract][Full Text] [Related]
8. A comparison of microRNA expression profiles from splenic hemangiosarcoma, splenic nodular hyperplasia, and normal spleens of dogs. Grimes JA; Prasad N; Levy S; Cattley R; Lindley S; Boothe HW; Henderson RA; Smith BF BMC Vet Res; 2016 Dec; 12(1):272. PubMed ID: 27912752 [TBL] [Abstract][Full Text] [Related]
9. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis. Heishima K; Mori T; Sakai H; Sugito N; Murakami M; Yamada N; Akao Y; Maruo K PLoS One; 2015; 10(9):e0137361. PubMed ID: 26335793 [TBL] [Abstract][Full Text] [Related]
10. Hemangiosarcoma Cells Promote Conserved Host-derived Hematopoietic Expansion. Kim JH; Schulte AJ; Sarver AL; Lee D; Angelos MG; Frantz AM; Forster CL; O'Brien TD; Cornax I; O'Sullivan MG; Cheng N; Lewellen M; Oseth L; Kumar S; Bullman S; Pedamallu CS; Goyal SM; Meyerson M; Lund TC; Breen M; Lindblad-Toh K; Dickerson EB; Kaufman DS; Modiano JF Cancer Res Commun; 2024 Jun; 4(6):1467-1480. PubMed ID: 38757809 [TBL] [Abstract][Full Text] [Related]
11. Endothelial cells by inactivation of VHL gene direct angiogenesis, not vasculogenesis via Twist1 accumulation associated with hemangioblastoma neovascularization. Wang Y; Chen DQ; Chen MY; Ji KY; Ma DX; Zhou LF Sci Rep; 2017 Jul; 7(1):5463. PubMed ID: 28710479 [TBL] [Abstract][Full Text] [Related]
12. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma. Thomas R; Borst L; Rotroff D; Motsinger-Reif A; Lindblad-Toh K; Modiano JF; Breen M Chromosome Res; 2014 Sep; 22(3):305-19. PubMed ID: 24599718 [TBL] [Abstract][Full Text] [Related]
13. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. Zatyka M; da Silva NF; Clifford SC; Morris MR; Wiesener MS; Eckardt KU; Houlston RS; Richards FM; Latif F; Maher ER Cancer Res; 2002 Jul; 62(13):3803-11. PubMed ID: 12097293 [TBL] [Abstract][Full Text] [Related]
14. Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium. Fosmire SP; Dickerson EB; Scott AM; Bianco SR; Pettengill MJ; Meylemans H; Padilla M; Frazer-Abel AA; Akhtar N; Getzy DM; Wojcieszyn J; Breen M; Helfand SC; Modiano JF Lab Invest; 2004 May; 84(5):562-72. PubMed ID: 15064773 [TBL] [Abstract][Full Text] [Related]
15. Integrative analysis of dysregulated microRNAs and mRNAs in multiple recurrent synchronized renal tumors from patients with von Hippel-Lindau disease. Gattolliat CH; Couvé S; Meurice G; Oréar C; Droin N; Chiquet M; Ferlicot S; Verkarre V; Vasiliu V; Molinié V; Méjean A; Dessen P; Giraud S; Bressac-De-Paillerets B; Gardie B; Tean Teh B; Richard S; Gad S Int J Oncol; 2018 Oct; 53(4):1455-1468. PubMed ID: 30066860 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of the tumor suppressor gene von Hippel-Lindau (VHL) in granulocytes contributes to development of liver hemangiomas in a mouse model. Bader HL; Hsu T BMC Cancer; 2016 Oct; 16(1):797. PubMed ID: 27733136 [TBL] [Abstract][Full Text] [Related]
17. Association of Sphingosine-1-phosphate (S1P)/S1P Receptor-1 Pathway with Cell Proliferation and Survival in Canine Hemangiosarcoma. Rodriguez AM; Graef AJ; LeVine DN; Cohen IR; Modiano JF; Kim JH J Vet Intern Med; 2015; 29(4):1088-97. PubMed ID: 26118793 [TBL] [Abstract][Full Text] [Related]
18. von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME. Tedesco L; Elguero B; Pacin DG; Senin S; Pollak C; Garcia Marchiñena PA; Jurado AM; Isola M; Labanca MJ; Palazzo M; Yankilevich P; Fuertes M; Arzt E Cell Death Dis; 2019 Mar; 10(4):266. PubMed ID: 30890701 [TBL] [Abstract][Full Text] [Related]