These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21062644)

  • 61. Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington disease is related to their physiological efficacy.
    Martin B; Chadwick W; Cong WN; Pantaleo N; Daimon CM; Golden EJ; Becker KG; Wood WH; Carlson OD; Egan JM; Maudsley S
    J Biol Chem; 2012 Sep; 287(38):31766-82. PubMed ID: 22822065
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington's disease.
    Snyder BR; Chiu AM; Prockop DJ; Chan AW
    PLoS One; 2010 Feb; 5(2):e9347. PubMed ID: 20179764
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington's disease.
    Niu L; Ye C; Sun Y; Peng T; Yang S; Wang W; Li H
    Cell Biosci; 2018; 8():41. PubMed ID: 30002810
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease.
    Bouchard J; Truong J; Bouchard K; Dunkelberger D; Desrayaud S; Moussaoui S; Tabrizi SJ; Stella N; Muchowski PJ
    J Neurosci; 2012 Dec; 32(50):18259-68. PubMed ID: 23238740
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor.
    Waickman AT; Alme A; Senaldi L; Zarek PE; Horton M; Powell JD
    Cancer Immunol Immunother; 2012 Jun; 61(6):917-26. PubMed ID: 22116345
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Deficiency of Toll-like receptors 2, 3 or 4 extends life expectancy in Huntington's disease mice.
    Griffioen K; Mattson MP; Okun E
    Heliyon; 2018 Jan; 4(1):e00508. PubMed ID: 29560427
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Longitudinal home-cage automated assessment of climbing behavior shows sexual dimorphism and aging-related decrease in C57BL/6J healthy mice and allows early detection of motor impairment in the N171-82Q mouse model of Huntington's disease.
    Bains RS; Forrest H; Sillito RR; Armstrong JD; Stewart M; Nolan PM; Wells SE
    Front Behav Neurosci; 2023; 17():1148172. PubMed ID: 37035623
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Pharmacological Potential of Adenosine A
    Mori A; Chen JF; Uchida S; Durlach C; King SM; Jenner P
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408767
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spontaneous Adenosine and Dopamine Cotransmission in the Caudate-Putamen Is Regulated by Adenosine Receptors.
    Borgus JR; Wang Y; DiScenza DJ; Venton BJ
    ACS Chem Neurosci; 2021 Dec; 12(23):4371-4379. PubMed ID: 34783243
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases.
    Chang CP; Wu KC; Lin CY; Chern Y
    J Biomed Sci; 2021 Oct; 28(1):70. PubMed ID: 34635103
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Purinergic Signaling in the Pathophysiology and Treatment of Huntington's Disease.
    Wiprich MT; Bonan CD
    Front Neurosci; 2021; 15():657338. PubMed ID: 34276284
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Purine Nucleotides Metabolism and Signaling in Huntington's Disease: Search for a Target for Novel Therapies.
    Tomczyk M; Glaser T; Slominska EM; Ulrich H; Smolenski RT
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207177
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Development of
    Lai TH; Schröder S; Toussaint M; Dukić-Stefanović S; Kranz M; Ludwig FA; Fischer S; Steinbach J; Deuther-Conrad W; Brust P; Moldovan RP
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33669003
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of mutant huntingtin inactivation on Huntington disease-related behaviours in the BACHD mouse model.
    Cheong RY; Baldo B; Sajjad MU; Kirik D; Petersén Å
    Neuropathol Appl Neurobiol; 2021 Jun; 47(4):564-578. PubMed ID: 33330988
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease.
    Glaser T; Andrejew R; Oliveira-Giacomelli Á; Ribeiro DE; Bonfim Marques L; Ye Q; Ren WJ; Semyanov A; Illes P; Tang Y; Ulrich H
    Neurosci Bull; 2020 Nov; 36(11):1299-1314. PubMed ID: 33026587
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adenosine A
    Ran H; Yuan J; Huang J; Wang J; Chen K; Zhou Z
    Transl Stroke Res; 2020 Oct; 11(5):1028-1040. PubMed ID: 32394183
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease.
    Blum D; Chern Y; Domenici MR; Buée L; Lin CY; Rea W; Ferré S; Popoli P
    J Caffeine Adenosine Res; 2018 Jun; 8(2):43-58. PubMed ID: 30023989
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Neuronal adenosine A
    Domenici MR; Chiodi V; Averna M; Armida M; Pèzzola A; Pepponi R; Ferrante A; Bader M; Fuxe K; Popoli P
    Purinergic Signal; 2018 Sep; 14(3):235-243. PubMed ID: 29770921
    [TBL] [Abstract][Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.