These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 21062807)
21. Regulation of alternative 3' splice site selection by constitutive splicing factors. Lin CH; Patton JG RNA; 1995 May; 1(3):234-45. PubMed ID: 7489496 [TBL] [Abstract][Full Text] [Related]
22. Involvement of splicing factor-1 in beta-catenin/T-cell factor-4-mediated gene transactivation and pre-mRNA splicing. Shitashige M; Naishiro Y; Idogawa M; Honda K; Ono M; Hirohashi S; Yamada T Gastroenterology; 2007 Mar; 132(3):1039-54. PubMed ID: 17383426 [TBL] [Abstract][Full Text] [Related]
23. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. Mazroui R; Puoti A; Krämer A RNA; 1999 Dec; 5(12):1615-31. PubMed ID: 10606272 [TBL] [Abstract][Full Text] [Related]
24. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Shao C; Yang B; Wu T; Huang J; Tang P; Zhou Y; Zhou J; Qiu J; Jiang L; Li H; Chen G; Sun H; Zhang Y; Denise A; Zhang DE; Fu XD Nat Struct Mol Biol; 2014 Nov; 21(11):997-1005. PubMed ID: 25326705 [TBL] [Abstract][Full Text] [Related]
25. The conserved RNA recognition motif 3 of U2 snRNA auxiliary factor (U2AF 65) is essential in vivo but dispensable for activity in vitro. Banerjee H; Rahn A; Gawande B; Guth S; Valcarcel J; Singh R RNA; 2004 Feb; 10(2):240-53. PubMed ID: 14730023 [TBL] [Abstract][Full Text] [Related]
26. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1. Rain JC; Rafi Z; Rhani Z; Legrain P; Krämer A RNA; 1998 May; 4(5):551-65. PubMed ID: 9582097 [TBL] [Abstract][Full Text] [Related]
27. A 5' splice site-proximal enhancer binds SF1 and activates exon bridging of a microexon. Carlo T; Sierra R; Berget SM Mol Cell Biol; 2000 Jun; 20(11):3988-95. PubMed ID: 10805741 [TBL] [Abstract][Full Text] [Related]
28. RBM5 promotes exon 4 skipping of AID pre-mRNA by competing with the binding of U2AF65 to the polypyrimidine tract. Jin W; Niu Z; Xu D; Li X FEBS Lett; 2012 Nov; 586(21):3852-7. PubMed ID: 23017209 [TBL] [Abstract][Full Text] [Related]
29. Pre-spliceosome formation in S.pombe requires a stable complex of SF1-U2AF(59)-U2AF(23). Huang T; Vilardell J; Query CC EMBO J; 2002 Oct; 21(20):5516-26. PubMed ID: 12374752 [TBL] [Abstract][Full Text] [Related]
30. Son maintains accurate splicing for a subset of human pre-mRNAs. Sharma A; Markey M; Torres-Muñoz K; Varia S; Kadakia M; Bubulya A; Bubulya PA J Cell Sci; 2011 Dec; 124(Pt 24):4286-98. PubMed ID: 22193954 [TBL] [Abstract][Full Text] [Related]
31. Major phosphorylation of SF1 on adjacent Ser-Pro motifs enhances interaction with U2AF65. Manceau V; Swenson M; Le Caer JP; Sobel A; Kielkopf CL; Maucuer A FEBS J; 2006 Feb; 273(3):577-87. PubMed ID: 16420481 [TBL] [Abstract][Full Text] [Related]
32. In vivo effects on intron retention and exon skipping by the U2AF large subunit and SF1/BBP in the nematode Caenorhabditis elegans. Ma L; Tan Z; Teng Y; Hoersch S; Horvitz HR RNA; 2011 Dec; 17(12):2201-11. PubMed ID: 22033331 [TBL] [Abstract][Full Text] [Related]
33. Mutations in the SF1-U2AF59-U2AF23 complex cause exon skipping in Schizosaccharomyces pombe. Haraguchi N; Andoh T; Frendewey D; Tani T J Biol Chem; 2007 Jan; 282(4):2221-8. PubMed ID: 17130122 [TBL] [Abstract][Full Text] [Related]
34. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Berglund JA; Abovich N; Rosbash M Genes Dev; 1998 Mar; 12(6):858-67. PubMed ID: 9512519 [TBL] [Abstract][Full Text] [Related]
35. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. Gupta SK; Carmi S; Waldman Ben-Asher H; Tkacz ID; Naboishchikov I; Michaeli S J Biol Chem; 2013 Feb; 288(7):4991-5006. PubMed ID: 23283975 [TBL] [Abstract][Full Text] [Related]
36. An SF1 affinity model to identify branch point sequences in human introns. Pastuszak AW; Joachimiak MP; Blanchette M; Rio DC; Brenner SE; Frankel AD Nucleic Acids Res; 2011 Mar; 39(6):2344-56. PubMed ID: 21071404 [TBL] [Abstract][Full Text] [Related]
37. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Liu Z; Luyten I; Bottomley MJ; Messias AC; Houngninou-Molango S; Sprangers R; Zanier K; Krämer A; Sattler M Science; 2001 Nov; 294(5544):1098-102. PubMed ID: 11691992 [TBL] [Abstract][Full Text] [Related]
38. A role for SRp54 during intron bridging of small introns with pyrimidine tracts upstream of the branch point. Kennedy CF; Krämer A; Berget SM Mol Cell Biol; 1998 Sep; 18(9):5425-34. PubMed ID: 9710626 [TBL] [Abstract][Full Text] [Related]
39. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. Thanaraj TA; Clark F Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667 [TBL] [Abstract][Full Text] [Related]
40. Characterization of a U2AF-independent commitment complex (E') in the mammalian spliceosome assembly pathway. Kent OA; Ritchie DB; Macmillan AM Mol Cell Biol; 2005 Jan; 25(1):233-40. PubMed ID: 15601845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]