These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21063631)

  • 1. Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors.
    Yuan CZ; Gao B; Shen LF; Yang SD; Hao L; Lu XJ; Zhang F; Zhang LJ; Zhang XG
    Nanoscale; 2011 Feb; 3(2):529-45. PubMed ID: 21063631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon materials for chemical capacitive energy storage.
    Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S
    Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation.
    Zhang LL; Xiong Z; Zhao XS
    ACS Nano; 2010 Nov; 4(11):7030-6. PubMed ID: 21028785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems.
    Huang YX; Liu XW; Xie JF; Sheng GP; Wang GY; Zhang YY; Xu AW; Yu HQ
    Chem Commun (Camb); 2011 May; 47(20):5795-7. PubMed ID: 21494723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors.
    Zhao X; Zhang L; Murali S; Stoller MD; Zhang Q; Zhu Y; Ruoff RS
    ACS Nano; 2012 Jun; 6(6):5404-12. PubMed ID: 22554307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.
    Jung N; Kwon S; Lee D; Yoon DM; Park YM; Benayad A; Choi JY; Park JS
    Adv Mater; 2013 Dec; 25(47):6854-8. PubMed ID: 24105733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of carbon materials for flexible electrochemical capacitors.
    He Y; Chen W; Gao C; Zhou J; Li X; Xie E
    Nanoscale; 2013 Oct; 5(19):8799-820. PubMed ID: 23934430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical behavior of caffeic acid at single-walled carbon nanotube:graphite-based electrode.
    Moghaddam AB; Ganjali MR; Dinarvand R; Norouzi P; Saboury AA; Moosavi-Movahedi AA
    Biophys Chem; 2007 Jun; 128(1):30-7. PubMed ID: 17389147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.
    Banks CE; Davies TJ; Wildgoose GG; Compton RG
    Chem Commun (Camb); 2005 Feb; (7):829-41. PubMed ID: 15700054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.
    Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M
    Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube - reduced graphene oxide composites for thermal energy harvesting applications.
    Romano MS; Li N; Antiohos D; Razal JM; Nattestad A; Beirne S; Fang S; Chen Y; Jalili R; Wallace GG; Baughman R; Chen J
    Adv Mater; 2013 Dec; 25(45):6602-6. PubMed ID: 24167027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes for electrochemical biosensing.
    Rivas GA; Rubianes MD; Rodríguez MC; Ferreyra NF; Luque GL; Pedano ML; Miscoria SA; Parrado C
    Talanta; 2007 Dec; 74(3):291-307. PubMed ID: 18371643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a high potential biocathode based on direct bioelectrochemistry between horseradish peroxidase and hierarchically structured carbon nanotubes.
    Jia W; Schwamborn S; Jin C; Xia W; Muhler M; Schuhmann W; Stoica L
    Phys Chem Chem Phys; 2010 Sep; 12(34):10088-92. PubMed ID: 20661521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic liquids for soft functional materials with carbon nanotubes.
    Fukushima T; Aida T
    Chemistry; 2007; 13(18):5048-58. PubMed ID: 17516613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode.
    Liu Y; Huang L; Dong S
    Biosens Bioelectron; 2007 Aug; 23(1):35-41. PubMed ID: 17459687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot synthesis of conducting graphene-polymer composites and their strain sensing application.
    Eswaraiah V; Balasubramaniam K; Ramaprabhu S
    Nanoscale; 2012 Feb; 4(4):1258-62. PubMed ID: 22241161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon.
    Zang J; Guo CX; Hu F; Yu L; Li CM
    Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ intercalating expandable graphite for mesoporous carbon/graphite nanosheet composites as high-performance supercapacitor electrodes.
    Wang L; Mu G; Tian C; Sun L; Zhou W; Tan T; Fu H
    ChemSusChem; 2012 Dec; 5(12):2442-50. PubMed ID: 23081877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.