These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 2106366)
1. Identification of H1 visual interneuron in Drosophila by [3H]2-deoxyglucose uptake during stationary flight. Bausenwein B; Buchner E; Heisenberg M Brain Res; 1990 Feb; 509(1):134-6. PubMed ID: 2106366 [TBL] [Abstract][Full Text] [Related]
2. Behavior-dependent activity labeling in the central complex of Drosophila during controlled visual stimulation. Bausenwein B; Müller NR; Heisenberg M J Comp Neurol; 1994 Feb; 340(2):255-68. PubMed ID: 8201021 [TBL] [Abstract][Full Text] [Related]
3. The deoxyglucose method for insects: towards electron microscopical resolution. Buchner E; Buchner S Eur Neurol; 1981; 20(3):152-6. PubMed ID: 6790283 [TBL] [Abstract][Full Text] [Related]
5. Drosophila fly straight by fixating objects in the face of expanding optic flow. Reiser MB; Dickinson MH J Exp Biol; 2010 May; 213(Pt 10):1771-81. PubMed ID: 20435828 [TBL] [Abstract][Full Text] [Related]
6. 2-Deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Drosophila. Buchner E; Buchner S; Hengstenberg R Science; 1979 Aug; 205(4407):687-8. PubMed ID: 111349 [TBL] [Abstract][Full Text] [Related]
7. [3H]2-deoxyglucose mapping of odor-induced neuronal activity in the antennal lobes of Drosophila melanogaster. Rodrigues V; Buchner E Brain Res; 1984 Dec; 324(2):374-8. PubMed ID: 6442179 [TBL] [Abstract][Full Text] [Related]
8. The role of experience in flight behaviour of Drosophila. Hesselberg T; Lehmann FO J Exp Biol; 2009 Oct; 212(Pt 20):3377-86. PubMed ID: 19801442 [TBL] [Abstract][Full Text] [Related]
9. The free-flight response of Drosophila to motion of the visual environment. Mronz M; Lehmann FO J Exp Biol; 2008 Jul; 211(Pt 13):2026-45. PubMed ID: 18552291 [TBL] [Abstract][Full Text] [Related]
10. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Bausenwein B; Fischbach KF Cell Tissue Res; 1992 Oct; 270(1):25-35. PubMed ID: 1423522 [TBL] [Abstract][Full Text] [Related]
11. Elementary detectors for vertical movement in the visual system of Drosophila. Buchner E; Götz KG; Straub C Biol Cybern; 1978 Dec; 31(4):235-42. PubMed ID: 104742 [No Abstract] [Full Text] [Related]
12. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Rister J; Pauls D; Schnell B; Ting CY; Lee CH; Sinakevitch I; Morante J; Strausfeld NJ; Ito K; Heisenberg M Neuron; 2007 Oct; 56(1):155-70. PubMed ID: 17920022 [TBL] [Abstract][Full Text] [Related]
13. Evidence for one-way movement detection in the visual system of Drosophila. Götz KG; Buchner E Biol Cybern; 1978 Dec; 31(4):243-8. PubMed ID: 104743 [No Abstract] [Full Text] [Related]
14. Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila. Banerjee S; Lee J; Venkatesh K; Wu CF; Hasan G J Neurosci; 2004 Sep; 24(36):7869-78. PubMed ID: 15356199 [TBL] [Abstract][Full Text] [Related]
15. Multi-stability with ambiguous visual stimuli in Drosophila orientation behavior. Toepfer F; Wolf R; Heisenberg M PLoS Biol; 2018 Feb; 16(2):e2003113. PubMed ID: 29438378 [TBL] [Abstract][Full Text] [Related]
16. Visual control of straight flight in Drosophila melanogaster. Wolf R; Heisenberg M J Comp Physiol A; 1990 Jul; 167(2):269-83. PubMed ID: 2120434 [TBL] [Abstract][Full Text] [Related]
17. A visuomotor circuit for evasive flight turns in Drosophila. Kim H; Park H; Lee J; Kim AJ Curr Biol; 2023 Jan; 33(2):321-335.e6. PubMed ID: 36603587 [TBL] [Abstract][Full Text] [Related]
18. Different neural pathways coordinate Drosophila flight initiations evoked by visual and olfactory stimuli. Trimarchi JR; Schneiderman AM J Exp Biol; 1995 May; 198(Pt 5):1099-104. PubMed ID: 8627145 [TBL] [Abstract][Full Text] [Related]