These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 21063702)
1. Biotechnological production of mannitol and its applications. Saha BC; Racine FM Appl Microbiol Biotechnol; 2011 Feb; 89(4):879-91. PubMed ID: 21063702 [TBL] [Abstract][Full Text] [Related]
2. Biotechnological and in situ food production of polyols by lactic acid bacteria. Ortiz ME; Bleckwedel J; Raya RR; Mozzi F Appl Microbiol Biotechnol; 2013 Jun; 97(11):4713-26. PubMed ID: 23604535 [TBL] [Abstract][Full Text] [Related]
3. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. Parmentier S; Arnaut F; Soetaert W; Vandamme EJ Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174 [TBL] [Abstract][Full Text] [Related]
4. Isolation, characterisation and exploitation of lactic acid bacteria capable of efficient conversion of sugars to mannitol. Rice T; Sahin AW; Lynch KM; Arendt EK; Coffey A Int J Food Microbiol; 2020 May; 321():108546. PubMed ID: 32087410 [TBL] [Abstract][Full Text] [Related]
5. Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Saha BC; Nakamura LK Biotechnol Bioeng; 2003 Jun; 82(7):864-71. PubMed ID: 12701154 [TBL] [Abstract][Full Text] [Related]
6. Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Bäumchen C; Bringer-Meyer S Appl Microbiol Biotechnol; 2007 Sep; 76(3):545-52. PubMed ID: 17503033 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Kaup B; Bringer-Meyer S; Sahm H Appl Microbiol Biotechnol; 2004 Apr; 64(3):333-9. PubMed ID: 14586579 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of a novel mannitol dehydrogenase from Lactobacillus intermedius. Saha BC Biotechnol Prog; 2004; 20(2):537-42. PubMed ID: 15059000 [TBL] [Abstract][Full Text] [Related]
9. Role of glucose in the bioconversion of fructose into mannitol by Candida magnoliae. Baek H; Song KH; Park SM; Kim SY; Hyun HH Biotechnol Lett; 2003 May; 25(10):761-5. PubMed ID: 12882004 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in the biological production of mannitol. Song SH; Vieille C Appl Microbiol Biotechnol; 2009 Aug; 84(1):55-62. PubMed ID: 19578847 [TBL] [Abstract][Full Text] [Related]
11. Global Analysis of Mannitol 2-Dehydrogenase in Lactobacillus reuteri CRL 1101 during Mannitol Production through Enzymatic, Genetic and Proteomic Approaches. Ortiz ME; Bleckwedel J; Fadda S; Picariello G; Hebert EM; Raya RR; Mozzi F PLoS One; 2017; 12(1):e0169441. PubMed ID: 28060932 [TBL] [Abstract][Full Text] [Related]
12. Cloning, expression, purification, and analysis of mannitol dehydrogenase gene mtlK from Lactobacillus brevis. Liu S; Saha B; Cotta M Appl Biochem Biotechnol; 2005; 121-124():391-401. PubMed ID: 15917616 [TBL] [Abstract][Full Text] [Related]
13. Application of mannitol producing Leuconostoc citreum TR116 to reduce sugar content of barley, oat and wheat malt-based worts. Rice T; Sahin AW; Heitmann M; Lynch KM; Jacob F; Arendt EK; Coffey A Food Microbiol; 2020 Sep; 90():103464. PubMed ID: 32336355 [TBL] [Abstract][Full Text] [Related]
14. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production. Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790 [TBL] [Abstract][Full Text] [Related]
15. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review. Martínez-Miranda JG; Chairez I; Durán-Páramo E Appl Biochem Biotechnol; 2022 Jun; 194(6):2762-2795. PubMed ID: 35195836 [TBL] [Abstract][Full Text] [Related]
16. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Richter H; Hamann I; Unden G Arch Microbiol; 2003 Apr; 179(4):227-33. PubMed ID: 12677361 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of lactic acid bacteria strains isolated from fructose-rich environments for their mannitol-production and milk-gelation abilities. Behare PV; Mazhar S; Pennone V; McAuliffe O J Dairy Sci; 2020 Dec; 103(12):11138-11151. PubMed ID: 33010917 [TBL] [Abstract][Full Text] [Related]
18. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
19. D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium. Bäumchen C; Roth AH; Biedendieck R; Malten M; Follmann M; Sahm H; Bringer-Meyer S; Jahn D Biotechnol J; 2007 Nov; 2(11):1408-16. PubMed ID: 17619232 [TBL] [Abstract][Full Text] [Related]
20. Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid. Tajima T; Tomita K; Miyahara H; Watanabe K; Aki T; Okamura Y; Matsumura Y; Nakashimada Y; Kato J J Biosci Bioeng; 2018 Feb; 125(2):180-184. PubMed ID: 28970111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]