These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21064080)

  • 41. A genetically engineered Escherichia coli, expressing the fusion protein of green fluorescent protein and carboxylesterase B1, can be easily detected in the environment following degradation of pesticide residues.
    Li Q; Chen R; Li W; Qiao CL; Wu YJ
    Biotechnol Lett; 2007 Sep; 29(9):1357-62. PubMed ID: 17581706
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell-free expression with the toxic amino acid canavanine.
    Worst EG; Exner MP; De Simone A; Schenkelberger M; Noireaux V; Budisa N; Ott A
    Bioorg Med Chem Lett; 2015 Sep; 25(17):3658-60. PubMed ID: 26130409
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New methods enabling efficient incorporation of unnatural amino acids in yeast.
    Wang Q; Wang L
    J Am Chem Soc; 2008 May; 130(19):6066-7. PubMed ID: 18426210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The creation of a novel fluorescent protein by guided consensus engineering.
    Dai M; Fisher HE; Temirov J; Kiss C; Phipps ME; Pavlik P; Werner JH; Bradbury AR
    Protein Eng Des Sel; 2007 Feb; 20(2):69-79. PubMed ID: 17277006
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An expanding genetic code.
    Xie J; Schultz PG
    Methods; 2005 Jul; 36(3):227-38. PubMed ID: 16076448
    [TBL] [Abstract][Full Text] [Related]  

  • 46. De novo design of proteins. Template-assembled synthetic proteins (TASP).
    Tuchscherer G; Steiner V; Altmann KH; Mutter M
    Methods Mol Biol; 1994; 36():261-85. PubMed ID: 7697113
    [No Abstract]   [Full Text] [Related]  

  • 47. Total amino acid stabilization during cell-free protein synthesis reactions.
    Calhoun KA; Swartz JR
    J Biotechnol; 2006 May; 123(2):193-203. PubMed ID: 16442654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression.
    Van Dien SJ; Iwatani S; Usuda Y; Matsui K
    J Biosci Bioeng; 2006 Jul; 102(1):34-40. PubMed ID: 16952834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Parallel incorporation of different fluorinated amino acids: on the way to "teflon" proteins.
    Merkel L; Schauer M; Antranikian G; Budisa N
    Chembiochem; 2010 Jul; 11(11):1505-7. PubMed ID: 20572253
    [No Abstract]   [Full Text] [Related]  

  • 50. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently.
    Ness JE; Kim S; Gottman A; Pak R; Krebber A; Borchert TV; Govindarajan S; Mundorff EC; Minshull J
    Nat Biotechnol; 2002 Dec; 20(12):1251-5. PubMed ID: 12426575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aromatic residues engineered into the beta-turn nucleation site of ubiquitin lead to a complex folding landscape, non-native side-chain interactions, and kinetic traps.
    Rea AM; Simpson ER; Meldrum JK; Williams HE; Searle MS
    Biochemistry; 2008 Dec; 47(48):12910-22. PubMed ID: 18991391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A statistical model for predicting protein folding rates from amino acid sequence with structural class information.
    Gromiha MM
    J Chem Inf Model; 2005; 45(2):494-501. PubMed ID: 15807515
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein engineering with unnatural amino acids.
    Zhang WH; Otting G; Jackson CJ
    Curr Opin Struct Biol; 2013 Aug; 23(4):581-7. PubMed ID: 23835227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Utilization of L-alpha-nucleobase amino acids (NBAs) as protein engineering tools: construction of NBA-modified HIV-1 protease analogues and enhancement of dimerization induced by nucleobase interaction.
    Takahashi T; Yana D; Mihara H
    Chembiochem; 2006 May; 7(5):729-32. PubMed ID: 16550624
    [No Abstract]   [Full Text] [Related]  

  • 55. Rapid protein-folding assay using green fluorescent protein.
    Waldo GS; Standish BM; Berendzen J; Terwilliger TC
    Nat Biotechnol; 1999 Jul; 17(7):691-5. PubMed ID: 10404163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GFP: from jellyfish to the Nobel prize and beyond.
    Zimmer M
    Chem Soc Rev; 2009 Oct; 38(10):2823-32. PubMed ID: 19771329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides.
    Kawakami T; Murakami H; Suga H
    Chem Biol; 2008 Jan; 15(1):32-42. PubMed ID: 18215771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Dynamics of protein evolution].
    Tokuriki N
    Tanpakushitsu Kakusan Koso; 2010 Jan; 55(1):18-25. PubMed ID: 20058702
    [No Abstract]   [Full Text] [Related]  

  • 59. Purification of green fluorescent protein overexpressed by a mutant recombinant Escherichia coli.
    Jain S; Teotia S; Gupta MN
    Protein Expr Purif; 2004 Jul; 36(1):76-81. PubMed ID: 15177287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Navigating the folding energy landscape of green fluorescent protein.
    Bertz M; Kunfermann A; Rief M
    Angew Chem Int Ed Engl; 2008; 47(43):8192-5. PubMed ID: 18785668
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.