BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21067154)

  • 41. Preparing a magnetically responsive single-wall carbon nanohorn colloid by anchoring magnetite nanoparticles.
    Utsumi S; Urita K; Kanoh H; Yudasaka M; Suenaga K; Iijima S; Kaneko K
    J Phys Chem B; 2006 Apr; 110(14):7165-70. PubMed ID: 16599481
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films.
    Xu GH; Zhang Q; Huang JQ; Zhao MQ; Zhou WP; Wei F
    Langmuir; 2010 Feb; 26(4):2798-804. PubMed ID: 19817403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parallel and orthogonal E-field alignment of single-walled carbon nanotubes by ac dielectrophoresis.
    Padmaraj D; Zagozdzon-Wosik W; Xie LM; Hadjiev VG; Cherukuri P; Wosik J
    Nanotechnology; 2009 Jan; 20(3):035201. PubMed ID: 19417287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Negative temperature coefficient of single-walled carbon nanotube-gold nanoparticle hybrid structures.
    Songmee N; Daothong S; Singjai P
    J Nanosci Nanotechnol; 2008 May; 8(5):2522-5. PubMed ID: 18572677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform fe(2)o(3) nanoclusters synthesized using diblock copolymer micelles.
    Fu Q; Huang S; Liu J
    J Phys Chem B; 2004 May; 108(20):6124-9. PubMed ID: 18950091
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF-TCNQ as the contact material.
    Xian X; Yan K; Zhou W; Jiao L; Wu Z; Liu Z
    Nanotechnology; 2009 Dec; 20(50):505204. PubMed ID: 19923654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistically enhanced dispersion of native protein-carbon nanotube conjugates by fluoroalcohols in aqueous solution.
    Hirano A; Maeda Y; Akasaka T; Shiraki K
    Chemistry; 2009 Sep; 15(38):9905-10. PubMed ID: 19685540
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and characterization of Au-attached single-walled carbon nanotube bundles.
    Jeong GH; Suzuki S; Kobayashi Y
    Nanotechnology; 2009 Jul; 20(28):285708. PubMed ID: 19550010
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation.
    Hong WK; Lee C; Nepal D; Geckeler KE; Shin K; Lee T
    Nanotechnology; 2006 Nov; 17(22):5675-80. PubMed ID: 21727341
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Nanotubes and occupational medicine].
    Borrelli I
    G Ital Med Lav Ergon; 2007; 29(3 Suppl):851-2. PubMed ID: 18409997
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films.
    Liu Q; Fujigaya T; Cheng HM; Nakashima N
    J Am Chem Soc; 2010 Nov; 132(46):16581-6. PubMed ID: 21028804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions.
    Fu Q; Liu J
    Langmuir; 2005 Feb; 21(4):1162-5. PubMed ID: 15697254
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis.
    Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M
    Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymer crystallization-driven, periodic patterning on carbon nanotubes.
    Li L; Li CY; Ni C
    J Am Chem Soc; 2006 Feb; 128(5):1692-9. PubMed ID: 16448143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding.
    Lu C; Liu J
    J Phys Chem B; 2006 Oct; 110(41):20254-7. PubMed ID: 17034203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.
    Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.
    Zhong XH; Li YL; Feng JM; Kang YR; Han SS
    Nanoscale; 2012 Sep; 4(18):5614-8. PubMed ID: 22864939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
    Liu M; Du Y; Miao YE; Ding Q; He S; Tjiu WW; Pan J; Liu T
    Nanoscale; 2015 Jan; 7(3):1037-46. PubMed ID: 25474256
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemistry at carbon nanotubes: perspective and issues.
    Dumitrescu I; Unwin PR; Macpherson JV
    Chem Commun (Camb); 2009 Dec; (45):6886-901. PubMed ID: 19904345
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues.
    Maligaspe E; Sandanayaka AS; Hasobe T; Ito O; D'Souza F
    J Am Chem Soc; 2010 Jun; 132(23):8158-64. PubMed ID: 20499875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.