These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 21067189)
1. Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. Witus LS; Moore T; Thuronyi BW; Esser-Kahn AP; Scheck RA; Iavarone AT; Francis MB J Am Chem Soc; 2010 Dec; 132(47):16812-7. PubMed ID: 21067189 [TBL] [Abstract][Full Text] [Related]
2. Site-Specific Protein Bioconjugation via a Pyridoxal 5'-Phosphate-Mediated N-Terminal Transamination Reaction. Witus LS; Francis M Curr Protoc Chem Biol; 2010 Jun; 2(2):125-34. PubMed ID: 23836553 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a biomimetic transamination reaction. Scheck RA; Dedeo MT; Iavarone AT; Francis MB J Am Chem Soc; 2008 Sep; 130(35):11762-70. PubMed ID: 18683929 [TBL] [Abstract][Full Text] [Related]
4. Site-specific protein transamination using N-methylpyridinium-4-carboxaldehyde. Witus LS; Netirojjanakul C; Palla KS; Muehl EM; Weng CH; Iavarone AT; Francis MB J Am Chem Soc; 2013 Nov; 135(45):17223-9. PubMed ID: 24191658 [TBL] [Abstract][Full Text] [Related]
5. Mass spectrometric analysis of the HIV-1 integrase-pyridoxal 5'-phosphate complex reveals a new binding site for a nucleotide inhibitor. Williams KL; Zhang Y; Shkriabai N; Karki RG; Nicklaus MC; Kotrikadze N; Hess S; Le Grice SF; Craigie R; Pathak VK; Kvaratskhelia M J Biol Chem; 2005 Mar; 280(9):7949-55. PubMed ID: 15615720 [TBL] [Abstract][Full Text] [Related]
6. RELIC--a bioinformatics server for combinatorial peptide analysis and identification of protein-ligand interaction sites. Mandava S; Makowski L; Devarapalli S; Uzubell J; Rodi DJ Proteomics; 2004 May; 4(5):1439-60. PubMed ID: 15188413 [TBL] [Abstract][Full Text] [Related]
7. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries. Miller CJ; Turk BE Methods Mol Biol; 2016; 1360():203-16. PubMed ID: 26501912 [TBL] [Abstract][Full Text] [Related]
8. Identification of lysine 346 as a functionally important residue for pyridoxal 5'-phosphate binding and catalysis in lysine 2, 3-aminomutase from Bacillus subtilis. Chen D; Frey PA Biochemistry; 2001 Jan; 40(2):596-602. PubMed ID: 11148055 [TBL] [Abstract][Full Text] [Related]
9. Studies on cyanobacterial protein PipY shed light on structure, potential functions, and vitamin B Tremiño L; Forcada-Nadal A; Contreras A; Rubio V FEBS Lett; 2017 Oct; 591(20):3431-3442. PubMed ID: 28914444 [TBL] [Abstract][Full Text] [Related]
10. Conformational epitopes on the diabetes autoantigen GAD65 identified by peptide phage display and molecular modeling. Myers MA; Davies JM; Tong JC; Whisstock J; Scealy M; Mackay IR; Rowley MJ J Immunol; 2000 Oct; 165(7):3830-8. PubMed ID: 11034389 [TBL] [Abstract][Full Text] [Related]
12. Substrate binding in human immunodeficiency virus reverse transcriptase. An analysis of pyridoxal 5'-phosphate sensitivity and identification of lysine 263 in the substrate-binding domain. Basu A; Tirumalai RS; Modak MJ J Biol Chem; 1989 May; 264(15):8746-52. PubMed ID: 2470747 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for D-amino acid transamination by the pyridoxal 5'-phosphate-dependent catalytic antibody 15A9. Golinelli-Pimpaneau B; Lüthi C; Christen P J Biol Chem; 2006 Aug; 281(33):23969-77. PubMed ID: 16790434 [TBL] [Abstract][Full Text] [Related]
14. Determination of the sequence specificity of XIAP BIR domains by screening a combinatorial peptide library. Sweeney MC; Wang X; Park J; Liu Y; Pei D Biochemistry; 2006 Dec; 45(49):14740-8. PubMed ID: 17144666 [TBL] [Abstract][Full Text] [Related]
15. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates. Futaki S; Ueno H; Martinez del Pozo A; Pospischil MA; Manning JM; Ringe D; Stoddard B; Tanizawa K; Yoshimura T; Soda K J Biol Chem; 1990 Dec; 265(36):22306-12. PubMed ID: 2125047 [TBL] [Abstract][Full Text] [Related]
16. Visualization of PLP-bound intermediates in hemeless variants of human cystathionine beta-synthase: evidence that lysine 119 is a general base. Evande R; Ojha S; Banerjee R Arch Biochem Biophys; 2004 Jul; 427(2):188-96. PubMed ID: 15196993 [TBL] [Abstract][Full Text] [Related]
17. Optimization and expansion of a site-selective N-methylpyridinium-4-carboxaldehyde-mediated transamination for bacterially expressed proteins. Palla KS; Witus LS; Mackenzie KJ; Netirojjanakul C; Francis MB J Am Chem Soc; 2015 Jan; 137(3):1123-9. PubMed ID: 25486267 [TBL] [Abstract][Full Text] [Related]
18. De novo proteins from combinatorial libraries. Moffet DA; Hecht MH Chem Rev; 2001 Oct; 101(10):3191-203. PubMed ID: 11710068 [No Abstract] [Full Text] [Related]
19. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure. Zou J; Saven JG J Mol Biol; 2000 Feb; 296(1):281-94. PubMed ID: 10656832 [TBL] [Abstract][Full Text] [Related]
20. Identification of functionally important residues in the pyridoxal-5'-phosphate-dependent catalytic antibody 15A9. Mouratou B; Stetefeld J Biochemistry; 2004 Jun; 43(21):6612-9. PubMed ID: 15157094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]