These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21067208)

  • 21. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Tufenkji N; Ghoshal S
    Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow.
    Li J; Ghoshal S
    Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media.
    Tufenkji N; Elimelech M
    Environ Sci Technol; 2004 Jan; 38(2):529-36. PubMed ID: 14750730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of particle shape on colloid retention and release in saturated porous media.
    Liu Q; Lazouskaya V; He Q; Jin Y
    J Environ Qual; 2010; 39(2):500-8. PubMed ID: 20176823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of colloidal fouling by coupling a dynamically updating velocity profile and electric field interactions with Force Bias Monte Carlo methods for membrane filtration.
    Boyle PM; Houchens BC; Kim AS
    J Colloid Interface Sci; 2013 Jun; 399():77-86. PubMed ID: 23540433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gravitational settling effects on unit cell predictions of colloidal retention in porous media in the absence of energy barriers.
    Ma H; Pazmino EF; Johnson WP
    Environ Sci Technol; 2011 Oct; 45(19):8306-12. PubMed ID: 21875031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.
    Taghavy A; Pennell KD; Abriola LM
    J Contam Hydrol; 2015 Jan; 172():48-60. PubMed ID: 25437227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.
    Dong H; Lo IM
    Water Res; 2013 May; 47(7):2489-96. PubMed ID: 23466217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.
    Katsenovich YP; Miralles-Wilhelm FR
    Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobilization and deposition of iron nano and sub-micrometer particles in porous media: a glass micromodel study.
    Wang Q; Lee JH; Jeong SW; Jang A; Lee S; Choi H
    J Hazard Mater; 2011 Sep; 192(3):1466-75. PubMed ID: 21802846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum.
    Vecchia ED; Luna M; Sethi R
    Environ Sci Technol; 2009 Dec; 43(23):8942-7. PubMed ID: 19943670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.
    Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY
    Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media.
    Basnet M; Ghoshal S; Tufenkji N
    Environ Sci Technol; 2013; 47(23):13355-64. PubMed ID: 24237158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of nZVI stability on mobility in porous media.
    Kocur CM; O'Carroll DM; Sleep BE
    J Contam Hydrol; 2013 Feb; 145():17-25. PubMed ID: 23261906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colloid filtration theory and the Happel sphere-in-cell model revisited with direct numerical simulation of colloids.
    Nelson KE; Ginn TR
    Langmuir; 2005 Mar; 21(6):2173-84. PubMed ID: 15752004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling.
    He F; Zhang M; Qian T; Zhao D
    J Colloid Interface Sci; 2009 Jun; 334(1):96-102. PubMed ID: 19383562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models.
    Sirk KM; Saleh NB; Phenrat T; Kim HJ; Dufour B; Jeongbin O; Golas PL; Matyjaszewski K; Lowry GV; Tilton RD
    Environ Sci Technol; 2009 May; 43(10):3803-8. PubMed ID: 19544891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.
    Godinez IG; Darnault CJ
    Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.