These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 21067358)

  • 21. Synthesis and antiviral activities of novel N-alkoxy-arylsulfonamide-based HIV protease inhibitors.
    Sherrill RG; Furfine ES; Hazen RJ; Miller JF; Reynolds DJ; Sammond DM; Spaltenstein A; Wheelan P; Wright LL
    Bioorg Med Chem Lett; 2005 Aug; 15(15):3560-4. PubMed ID: 15975788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Among the devils in the details are protease sequence, susceptibility, and structure in CRF02_AG viruses.
    Katzenstein D; Ogden R
    Clin Infect Dis; 2005 Jul; 41(2):252-4. PubMed ID: 15983924
    [No Abstract]   [Full Text] [Related]  

  • 23. Evaluation of triazolamers as active site inhibitors of HIV-1 protease.
    Jochim AL; Miller SE; Angelo NG; Arora PS
    Bioorg Med Chem Lett; 2009 Nov; 19(21):6023-6. PubMed ID: 19800230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inorganic polyhedral metallacarborane inhibitors of HIV protease: a new approach to overcoming antiviral resistance.
    Kozísek M; Cígler P; Lepsík M; Fanfrlík J; Rezácová P; Brynda J; Pokorná J; Plesek J; Grüner B; Grantz Sasková K; Václavíková J; Král V; Konvalinka J
    J Med Chem; 2008 Aug; 51(15):4839-43. PubMed ID: 18598016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design, asymmetric synthesis, and evaluation of pseudosymmetric sulfoximine inhibitors against HIV-1 protease.
    Lu D; Sham YY; Vince R
    Bioorg Med Chem; 2010 Mar; 18(5):2037-48. PubMed ID: 20138769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of constrained peptidomimetic chemotypes as HIV protease inhibitors.
    Calugi C; Guarna A; Trabocchi A
    Eur J Med Chem; 2014 Sep; 84():444-53. PubMed ID: 25042102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and synthesis of highly potent HIV-1 protease inhibitors with novel isosorbide-derived P2 ligands.
    Qiu X; Zhao GD; Tang LQ; Liu ZP
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2465-8. PubMed ID: 24767846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Target-selective photodegradation of HIV-1 protease and inhibition of HIV-1 replication in living cells by designed fullerene-sugar hybrids.
    Tanimoto S; Sakai S; Kudo E; Okada S; Matsumura S; Takahashi D; Toshima K
    Chem Asian J; 2012 May; 7(5):911-4. PubMed ID: 22378594
    [No Abstract]   [Full Text] [Related]  

  • 29. Peptidomimetic inhibitors complexed with HIV-1 protease: crystallisation for X-ray diffraction studies.
    Dohnálek J; Hasek J; Brynda J; Fábry M; Sedlácek J; Konvalinka J; Hradilek M; Soucek M; Adams MJ; Naylor CE
    Gen Physiol Biophys; 1998 Jun; 17 Suppl 1():9-11. PubMed ID: 9789742
    [No Abstract]   [Full Text] [Related]  

  • 30. HIV protease inhibitors.
    Winslow DL; Otto MJ
    AIDS; 1995; 9 Suppl A():S183-92. PubMed ID: 8819585
    [No Abstract]   [Full Text] [Related]  

  • 31. A modular system to evaluate the efficacy of protease inhibitors against HIV-2.
    Mahdi M; Matúz K; Tóth F; Tőzsér J
    PLoS One; 2014; 9(11):e113221. PubMed ID: 25419967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring inhibitor-induced conformational population shifts in HIV-1 protease by pulsed EPR spectroscopy.
    Blackburn ME; Veloro AM; Fanucci GE
    Biochemistry; 2009 Sep; 48(37):8765-7. PubMed ID: 19691291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New active HIV-1 protease inhibitors derived from 3-hexanol: conformation study of the free inhibitors in crystalline state and in complex with the enzyme.
    Ziółkowska NE; Bujacz A; Randad RS; Erickson JW; Skálová T; Hašek J; Bujacz G
    Chem Biol Drug Des; 2012 May; 79(5):798-809. PubMed ID: 22296826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying the molecular mechanics and binding dynamics characteristics of potent inhibitors to HIV-1 protease.
    Li D; Liu MS; Ji B; Hwang KC; Huang Y
    Chem Biol Drug Des; 2012 Sep; 80(3):440-54. PubMed ID: 22621379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative studies on inhibitors of HIV protease: a target for drug design.
    Jayaraman S; Shah K
    In Silico Biol; 2008; 8(5-6):427-47. PubMed ID: 19374129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease.
    Sperka T; Pitlik J; Bagossi P; Tözsér J
    Bioorg Med Chem Lett; 2005 Jun; 15(12):3086-90. PubMed ID: 15893929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutron crystallography used to identify targets to improve HIV-1 protease inhibitor.
    Hill R
    Future Med Chem; 2013 Oct; 5(15):1705. PubMed ID: 24144407
    [No Abstract]   [Full Text] [Related]  

  • 38. Probe detects HIV protease and toxicity of drugs.
    AIDS Patient Care STDS; 2010 Nov; 24(11):744. PubMed ID: 21067358
    [No Abstract]   [Full Text] [Related]  

  • 39. Quantitative assessment of in vivo HIV protease activity using genetically engineered QD-based FRET probes.
    Cella LN; Biswas P; Yates MV; Mulchandani A; Chen W
    Biotechnol Bioeng; 2014 Jun; 111(6):1082-7. PubMed ID: 24473897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization of human immunodeficiency virus protease inhibition using a novel Förster resonance energy transfer molecular probe.
    Jin S; Ellis E; Veetil JV; Yao H; Ye K
    Biotechnol Prog; 2011 Jul; 27(4):1107-14. PubMed ID: 21584951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.