BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21067450)

  • 1. Patterns and processes in the evolution of the eukaryotic endomembrane system.
    Elias M
    Mol Membr Biol; 2010 Nov; 27(8):469-89. PubMed ID: 21067450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell.
    Makarova KS; Aravind L; Galperin MY; Grishin NV; Tatusov RL; Wolf YI; Koonin EV
    Genome Res; 1999 Jul; 9(7):608-28. PubMed ID: 10413400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode.
    Dacks JB; Field MC
    J Cell Sci; 2007 Sep; 120(Pt 17):2977-85. PubMed ID: 17715154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss.
    Malik SB; Ramesh MA; Hulstrand AM; Logsdon JM
    Mol Biol Evol; 2007 Dec; 24(12):2827-41. PubMed ID: 17921483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage.
    Leung KF; Dacks JB; Field MC
    Traffic; 2008 Sep; 9(10):1698-716. PubMed ID: 18637903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaches to defining the ancestral eukaryotic protein complexome.
    Ceulemans H; Beke L; Bollen M
    Bioessays; 2006 Mar; 28(3):316-24. PubMed ID: 16479579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes.
    Vishwanath P; Favaretto P; Hartman H; Mohr SC; Smith TF
    Mol Phylogenet Evol; 2004 Dec; 33(3):615-25. PubMed ID: 15522791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes.
    Iyer LM; Anantharaman V; Wolf MY; Aravind L
    Int J Parasitol; 2008 Jan; 38(1):1-31. PubMed ID: 17949725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RAB family GTPase Rab1A from Plasmodium falciparum defines a unique paralog shared by chromalveolates and rhizaria.
    Elias M; Patron NJ; Keeling PJ
    J Eukaryot Microbiol; 2009; 56(4):348-56. PubMed ID: 19602080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell.
    Makarova KS; Wolf YI; Mekhedov SL; Mirkin BG; Koonin EV
    Nucleic Acids Res; 2005; 33(14):4626-38. PubMed ID: 16106042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae).
    Zhou D; Zhou J; Meng L; Wang Q; Xie H; Guan Y; Ma Z; Zhong Y; Chen F; Liu J
    Gene; 2009 Jul; 441(1-2):36-44. PubMed ID: 18640249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins.
    Koumandou VL; Dacks JB; Coulson RM; Field MC
    BMC Evol Biol; 2007 Feb; 7():29. PubMed ID: 17319956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origins of modern proteomes.
    Kurland CG; Canbäck B; Berg OG
    Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes.
    Desmond E; Brochier-Armanet C; Forterre P; Gribaldo S
    Res Microbiol; 2011 Jan; 162(1):53-70. PubMed ID: 21034815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of the adenine nucleotide translocase family.
    Santamaria M; Lanave C; Saccone C
    Gene; 2004 May; 333():51-9. PubMed ID: 15177680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phylogenetic framework for the aquaporin family in eukaryotes.
    Zardoya R; Villalba S
    J Mol Evol; 2001 May; 52(5):391-404. PubMed ID: 11443343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene duplication and the evolution of group II chaperonins: implications for structure and function.
    Archibald JM; Blouin C; Doolittle WF
    J Struct Biol; 2001 Aug; 135(2):157-69. PubMed ID: 11580265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of duplicated reggie genes in zebrafish and goldfish.
    Málaga-Trillo E; Laessing U; Lang DM; Meyer A; Stuermer CA
    J Mol Evol; 2002 Feb; 54(2):235-45. PubMed ID: 11821916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times.
    Theissen U; Hoffmeister M; Grieshaber M; Martin W
    Mol Biol Evol; 2003 Sep; 20(9):1564-74. PubMed ID: 12832624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases.
    Elias M; Brighouse A; Gabernet-Castello C; Field MC; Dacks JB
    J Cell Sci; 2012 May; 125(Pt 10):2500-8. PubMed ID: 22366452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.