BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 21068108)

  • 21. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.
    DalCorso G; Pesaresi P; Masiero S; Aseeva E; Schünemann D; Finazzi G; Joliot P; Barbato R; Leister D
    Cell; 2008 Jan; 132(2):273-85. PubMed ID: 18243102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I.
    Okegawa Y; Long TA; Iwano M; Takayama S; Kobayashi Y; Covert SF; Shikanai T
    Plant Cell Physiol; 2007 Oct; 48(10):1462-71. PubMed ID: 17913767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves.
    Huang W; Yang YJ; Zhang SB
    J Plant Physiol; 2017 Feb; 209():76-83. PubMed ID: 28013173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms.
    Shirao M; Kuroki S; Kaneko K; Kinjo Y; Tsuyama M; Förster B; Takahashi S; Badger MR
    Plant Cell Physiol; 2013 Jul; 54(7):1152-63. PubMed ID: 23624674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyclic electron flow around photosystem I is essential for photosynthesis.
    Munekage Y; Hashimoto M; Miyake C; Tomizawa K; Endo T; Tasaka M; Shikanai T
    Nature; 2004 Jun; 429(6991):579-82. PubMed ID: 15175756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis.
    Iwai M; Takizawa K; Tokutsu R; Okamuro A; Takahashi Y; Minagawa J
    Nature; 2010 Apr; 464(7292):1210-3. PubMed ID: 20364124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NDH-Mediated Cyclic Electron Flow Around Photosystem I is Crucial for C4 Photosynthesis.
    Ishikawa N; Takabayashi A; Noguchi K; Tazoe Y; Yamamoto H; von Caemmerer S; Sato F; Endo T
    Plant Cell Physiol; 2016 Oct; 57(10):2020-2028. PubMed ID: 27497446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO(2) assimilation is restricted.
    Driever SM; Baker NR
    Plant Cell Environ; 2011 May; 34(5):837-46. PubMed ID: 21332508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N; Egorova E; Carpentier R
    Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII.
    Huang W; Zhang SB; Cao KF
    Plant Cell Physiol; 2010 Nov; 51(11):1922-8. PubMed ID: 20861006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species.
    Huang W; Yang YJ; Hu H; Zhang SB
    J Photochem Photobiol B; 2016 Dec; 165():71-79. PubMed ID: 27768955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Knock-out of the chloroplast-encoded PSI-J subunit of photosystem I in Nicotiana tabacum.
    Hansson A; Amann K; Zygadlo A; Meurer J; Scheller HV; Jensen PE
    FEBS J; 2007 Apr; 274(7):1734-46. PubMed ID: 17331187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The water-water cycle is a major electron sink in Camellia species when CO
    Cai YF; Yang QY; Li SF; Wang JH; Huang W
    J Photochem Photobiol B; 2017 Mar; 168():59-66. PubMed ID: 28171808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosystem II cycle and alternative electron flow in leaves.
    Laisk A; Eichelmann H; Oja V; Rasulov B; Rämma H
    Plant Cell Physiol; 2006 Jul; 47(7):972-83. PubMed ID: 16774929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves.
    Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining the limitations and regulation of photosynthetic energy transduction in leaves.
    Baker NR; Harbinson J; Kramer DM
    Plant Cell Environ; 2007 Sep; 30(9):1107-25. PubMed ID: 17661750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii.
    Dang KV; Plet J; Tolleter D; Jokel M; Cuiné S; Carrier P; Auroy P; Richaud P; Johnson X; Alric J; Allahverdiyeva Y; Peltier G
    Plant Cell; 2014 Jul; 26(7):3036-50. PubMed ID: 24989042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.
    Sun Y; Geng Q; Du Y; Yang X; Zhai H
    Plant Sci; 2017 Mar; 256():65-71. PubMed ID: 28167040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The response of cyclic electron flow around photosystem I to changes in photorespiration and nitrate assimilation.
    Walker BJ; Strand DD; Kramer DM; Cousins AB
    Plant Physiol; 2014 May; 165(1):453-62. PubMed ID: 24664207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a PSI-LHCI-cyt b
    Steinbeck J; Ross IL; Rothnagel R; Gäbelein P; Schulze S; Giles N; Ali R; Drysdale R; Sierecki E; Gambin Y; Stahlberg H; Takahashi Y; Hippler M; Hankamer B
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10517-10522. PubMed ID: 30254175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.