These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21068320)

  • 1. Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study.
    Edgerton JR; Hanson JE; Günay C; Jaeger D
    J Neurosci; 2010 Nov; 30(45):15146-59. PubMed ID: 21068320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons.
    Hanson JE; Smith Y; Jaeger D
    J Neurosci; 2004 Jan; 24(2):329-40. PubMed ID: 14724231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons.
    Edgerton JR; Jaeger D
    J Neurosci; 2011 Jul; 31(30):10919-36. PubMed ID: 21795543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration.
    Schultheiss NW; Edgerton JR; Jaeger D
    J Neurosci; 2010 Feb; 30(7):2767-82. PubMed ID: 20164360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular distribution of high-voltage-activated calcium channel subtypes in rat globus pallidus neurons.
    Hanson JE; Smith Y
    J Comp Neurol; 2002 Jan; 442(2):89-98. PubMed ID: 11754164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons.
    Chan CS; Shigemoto R; Mercer JN; Surmeier DJ
    J Neurosci; 2004 Nov; 24(44):9921-32. PubMed ID: 15525777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus.
    Baufreton J; Kirkham E; Atherton JF; Menard A; Magill PJ; Bolam JP; Bevan MD
    J Neurophysiol; 2009 Jul; 102(1):532-45. PubMed ID: 19458148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials.
    Myoga MH; Beierlein M; Regehr WG
    J Neurosci; 2009 Jun; 29(24):7803-14. PubMed ID: 19535592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional connectivity and integrative properties of globus pallidus neurons.
    Jaeger D; Kita H
    Neuroscience; 2011 Dec; 198():44-53. PubMed ID: 21835227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro.
    Sims RE; Woodhall GL; Wilson CL; Stanford IM
    Eur J Neurosci; 2008 Dec; 28(12):2401-8. PubMed ID: 19087170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single-cell analysis of intrinsic connectivity in the rat globus pallidus.
    Sadek AR; Magill PJ; Bolam JP
    J Neurosci; 2007 Jun; 27(24):6352-62. PubMed ID: 17567796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites.
    Hendrickson EB; Edgerton JR; Jaeger D
    J Comput Neurosci; 2011 Apr; 30(2):301-21. PubMed ID: 20623167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.
    Chen WR; Shen GY; Shepherd GM; Hines ML; Midtgaard J
    J Neurophysiol; 2002 Nov; 88(5):2755-64. PubMed ID: 12424310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of synchronous synaptic input in CA1 pyramidal neuron depends on spatial and temporal distributions of the input.
    Tigerholm J; Migliore M; Fransén E
    Hippocampus; 2013 Jan; 23(1):87-99. PubMed ID: 22996230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements.
    Jaffe DB; Ross WN; Lisman JE; Lasser-Ross N; Miyakawa H; Johnston D
    J Neurophysiol; 1994 Mar; 71(3):1065-77. PubMed ID: 8201402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic integration in a recurrent network.
    Poznanski RR
    J Integr Neurosci; 2002 Jun; 1(1):69-99. PubMed ID: 15011265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.
    Atherton JF; Wokosin DL; Ramanathan S; Bevan MD
    J Physiol; 2008 Dec; 586(23):5679-700. PubMed ID: 18832425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial localization of synapses required for supralinear summation of action potentials and EPSPs.
    Urakubo H; Aihara T; Kuroda S; Watanabe M; Kondo S
    J Comput Neurosci; 2004; 16(3):251-65. PubMed ID: 15114049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially dispersed synapses yield sharply-tuned place cell responses through dendritic spike initiation.
    Basak R; Narayanan R
    J Physiol; 2018 Sep; 596(17):4173-4205. PubMed ID: 29893405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells.
    Lipowsky R; Gillessen T; Alzheimer C
    J Neurophysiol; 1996 Oct; 76(4):2181-91. PubMed ID: 8899593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.