These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Hansen PB; Jensen BL; Andreasen D; Skøtt O Circ Res; 2001 Sep; 89(7):630-8. PubMed ID: 11577029 [TBL] [Abstract][Full Text] [Related]
3. T-type calcium channels in the regulation of afferent and efferent arterioles in rats. Feng MG; Li M; Navar LG Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435 [TBL] [Abstract][Full Text] [Related]
4. Functional importance of L- and P/Q-type voltage-gated calcium channels in human renal vasculature. Hansen PB; Poulsen CB; Walter S; Marcussen N; Cribbs LL; Skøtt O; Jensen BL Hypertension; 2011 Sep; 58(3):464-70. PubMed ID: 21788606 [TBL] [Abstract][Full Text] [Related]
5. Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo. Thuesen AD; Andersen H; Cardel M; Toft A; Walter S; Marcussen N; Jensen BL; Bie P; Hansen PB Am J Physiol Renal Physiol; 2014 Aug; 307(4):F445-52. PubMed ID: 24966091 [TBL] [Abstract][Full Text] [Related]
6. Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney. Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Saruta T Hypertension; 2001 Sep; 38(3):343-7. PubMed ID: 11566902 [TBL] [Abstract][Full Text] [Related]
7. Ca2+ channel subtypes and pharmacology in the kidney. Hayashi K; Wakino S; Sugano N; Ozawa Y; Homma K; Saruta T Circ Res; 2007 Feb; 100(3):342-53. PubMed ID: 17307972 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles. Feng MG; Navar LG Am J Physiol Renal Physiol; 2006 Apr; 290(4):F873-9. PubMed ID: 16263803 [TBL] [Abstract][Full Text] [Related]
9. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF. Wang X; Loutzenhiser R Am J Physiol Renal Physiol; 2002 Jan; 282(1):F124-32. PubMed ID: 11739120 [TBL] [Abstract][Full Text] [Related]
10. Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca(2+) channels. Gustafsson F; Andreasen D; Salomonsson M; Jensen BL; Holstein-Rathlou N Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H582-90. PubMed ID: 11158955 [TBL] [Abstract][Full Text] [Related]
11. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles. Howitt L; Kuo IY; Ellis A; Chaston DJ; Shin HS; Hansen PB; Hill CE Cardiovasc Res; 2013 Jun; 98(3):449-57. PubMed ID: 23436820 [TBL] [Abstract][Full Text] [Related]
12. Governance of arteriolar oscillation by ryanodine receptors. Takenaka T; Ohno Y; Hayashi K; Saruta T; Suzuki H Am J Physiol Regul Integr Comp Physiol; 2003 Jul; 285(1):R125-31. PubMed ID: 12793994 [TBL] [Abstract][Full Text] [Related]
13. Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles. Gericke A; Goloborodko E; Sniatecki JJ; Steege A; Wojnowski L; Pfeiffer N Exp Eye Res; 2013 Apr; 109():60-6. PubMed ID: 23434456 [TBL] [Abstract][Full Text] [Related]
14. Angiotensin II-mediated constriction of afferent and efferent arterioles involves T-type Ca2+ channel activation. Feng MG; Navar LG Am J Nephrol; 2004; 24(6):641-8. PubMed ID: 15627720 [TBL] [Abstract][Full Text] [Related]
15. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries. VanBavel E; Sorop O; Andreasen D; Pfaffendorf M; Jensen BL Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2239-43. PubMed ID: 12388244 [TBL] [Abstract][Full Text] [Related]
16. In the presence of L-NAME SERCA blockade induces endothelium-dependent contraction of mouse aorta through activation of smooth muscle prostaglandin H2/thromboxane A2 receptors. Okon EB; Golbabaie A; van Breemen C Br J Pharmacol; 2002 Oct; 137(4):545-53. PubMed ID: 12359637 [TBL] [Abstract][Full Text] [Related]
17. Role of protein kinase C in Ca channel blocker-induced renal arteriolar dilation in spontaneously hypertensive rats--studies in the isolated perfused hydronephrotic kidney. Hayashi K; Wakino S; Ozawa Y; Homma K; Kanda T; Okubo K; Takamatsu I; Tatematsu S; Kumagai H; Saruta T Keio J Med; 2005 Jun; 54(2):102-8. PubMed ID: 16077260 [TBL] [Abstract][Full Text] [Related]
18. Endothelium-independent constriction of isolated, pressurized arterioles by Nomega-nitro-L-arginine methyl ester (L-NAME). Murphy TV; Kotecha N; Hill MA Br J Pharmacol; 2007 Jul; 151(5):602-9. PubMed ID: 17471179 [TBL] [Abstract][Full Text] [Related]
19. The role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. Braunstein TH; Inoue R; Cribbs L; Oike M; Ito Y; Holstein-Rathlou NH; Jensen LJ J Vasc Res; 2009; 46(2):138-51. PubMed ID: 18765948 [TBL] [Abstract][Full Text] [Related]
20. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles. Dalsgaard T; Kroigaard C; Bek T; Simonsen U Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]