These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21068776)

  • 41. Analysis of the distribution and diversity in recent Hawaiian volcanic deposits of a putative carbon monoxide dehydrogenase large subunit gene.
    Dunfield KE; King GM
    Environ Microbiol; 2005 Sep; 7(9):1405-12. PubMed ID: 16104863
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic analysis of Carboxydothermus hydrogenoformans carbon monoxide dehydrogenase genes cooF and cooS.
    González JM; Robb FT
    FEMS Microbiol Lett; 2000 Oct; 191(2):243-7. PubMed ID: 11024270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic Engineering of Carbon Monoxide-dependent Hydrogen-producing Machinery in Parageobacillus thermoglucosidasius.
    Adachi Y; Inoue M; Yoshida T; Sako Y
    Microbes Environ; 2020; 35(4):. PubMed ID: 33087627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex.
    Singer SW; Hirst MB; Ludden PW
    Biochim Biophys Acta; 2006 Dec; 1757(12):1582-91. PubMed ID: 17123462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage.
    Billerbeck S; Wemheuer B; Voget S; Poehlein A; Giebel HA; Brinkhoff T; Gram L; Jeffrey WH; Daniel R; Simon M
    Nat Microbiol; 2016 May; 1(7):16063. PubMed ID: 27572966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16.
    Heinrich D; Raberg M; Steinbüchel A
    Microb Biotechnol; 2018 Jul; 11(4):647-656. PubMed ID: 29027357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diversity, ecology, and genomics of the Roseobacter clade: a short overview.
    Brinkhoff T; Giebel HA; Simon M
    Arch Microbiol; 2008 Jun; 189(6):531-9. PubMed ID: 18253713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cryptic carbon and sulfur cycling between surface ocean plankton.
    Durham BP; Sharma S; Luo H; Smith CB; Amin SA; Bender SJ; Dearth SP; Van Mooy BA; Campagna SR; Kujawinski EB; Armbrust EV; Moran MA
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):453-7. PubMed ID: 25548163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carbon monoxide utilization of an extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4.
    Yano T; Yoshida N; Takagi H
    J Biosci Bioeng; 2012 Jul; 114(1):53-5. PubMed ID: 22561879
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade.
    Lidbury I; Kimberley G; Scanlan DJ; Murrell JC; Chen Y
    Environ Microbiol; 2015 Dec; 17(12):5048-62. PubMed ID: 26058574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase.
    Ensign SA; Ludden PW
    J Biol Chem; 1991 Sep; 266(27):18395-403. PubMed ID: 1917963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1995 Jun; 34(24):7879-88. PubMed ID: 7794899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, from Clostridium thermoaceticum.
    Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1994 Aug; 33(32):9769-77. PubMed ID: 8068656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats.
    Allgaier M; Uphoff H; Felske A; Wagner-Döbler I
    Appl Environ Microbiol; 2003 Sep; 69(9):5051-9. PubMed ID: 12957886
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacteria of the Roseobacter clade show potential for secondary metabolite production.
    Martens T; Gram L; Grossart HP; Kessler D; Müller R; Simon M; Wenzel SC; Brinkhoff T
    Microb Ecol; 2007 Jul; 54(1):31-42. PubMed ID: 17351813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans.
    Rother M; Oelgeschläger E; Metcalf WM
    Arch Microbiol; 2007 Nov; 188(5):463-72. PubMed ID: 17554525
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade.
    Koblížek M; Moulisová V; Muroňová M; Oborník M
    Folia Microbiol (Praha); 2015 Jan; 60(1):37-43. PubMed ID: 25090942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and application of quantitative-PCR tools for subgroups of the Roseobacter clade.
    Buchan A; Hadden M; Suzuki MT
    Appl Environ Microbiol; 2009 Dec; 75(23):7542-7. PubMed ID: 19801463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica.
    Shin W; Lee SH; Shin JW; Lee SP; Kim Y
    J Am Chem Soc; 2003 Dec; 125(48):14688-9. PubMed ID: 14640627
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of CO to structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase.
    Harrop TC; Olmstead MM; Mascharak PK
    Chem Commun (Camb); 2004 Aug; (15):1744-5. PubMed ID: 15278165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.