These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21068908)

  • 1. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils.
    Díaz JA; Mahajan VN
    Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zernike annular polynomials and optical aberrations of systems with annular pupils.
    Mahajan VN
    Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zernike circle polynomials and optical aberrations of systems with circular pupils.
    Mahajan VN
    Appl Opt; 1994 Dec; 33(34):8121. PubMed ID: 20963040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strehl ratio and amplitude-weighted generalized orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TP
    Appl Opt; 2017 Mar; 56(8):2336-2345. PubMed ID: 28375280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zernike polynomials and optical aberrations.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8060-2. PubMed ID: 21068909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.
    Mahajan VN
    Appl Opt; 2010 Dec; 49(36):6924-9. PubMed ID: 21173827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging characteristics of Zernike and annular polynomial aberrations.
    Mahajan VN; Díaz JA
    Appl Opt; 2013 Apr; 52(10):2062-74. PubMed ID: 23545961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations.
    El Gawhary O
    Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration.
    Hasan SY; Shaker AS
    Appl Opt; 2012 Dec; 51(35):8490-7. PubMed ID: 23262546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-front interpretation with Zernike polynomials.
    Wang JY; Silva DE
    Appl Opt; 1980 May; 19(9):1510-8. PubMed ID: 20221066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zernike annular polynomials and atmospheric turbulence.
    Dai GM; Mahajan VN
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):139-55. PubMed ID: 17164852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials.
    Rahbar K; Faez K; Attaran Kakhki E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method to evaluate beam quality of Gaussian beams with aberrations.
    Qiu Y; Huang L; Gong M; Qiang L; Yan P; Zhang H
    Appl Opt; 2012 Sep; 51(27):6539-43. PubMed ID: 23033023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-compensation of Zernike aberrations in Gaussian beam optics.
    Czuchnowski J; Prevedel R
    Opt Lett; 2021 Jul; 46(14):3480-3483. PubMed ID: 34264243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.