These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21068967)

  • 1. Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination.
    Barton JP
    Appl Opt; 1995 Dec; 34(36):8472-3. PubMed ID: 21068967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination.
    Barton JP
    Appl Opt; 1995 Aug; 34(24):5542-51. PubMed ID: 21060377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic-field calculations for irregularly shaped, axisymmetric layered particles with focused illumination.
    Barton JP
    Appl Opt; 1996 Jan; 35(3):532-41. PubMed ID: 21069037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic field calculations for an irregularly shaped, near-spheroidal particle with arbitrary illumination.
    Barton JP
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2429-35. PubMed ID: 12469737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal, near-surface, and scattered electromagnetic fields for a layered spheroid with arbitrary illumination.
    Barton JP
    Appl Opt; 2001 Jul; 40(21):3598-607. PubMed ID: 18360389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light scattering by a spheroidal particle.
    Asano S; Yamamoto G
    Appl Opt; 1975 Jan; 14(1):29-49. PubMed ID: 20134829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic fields for a spheroidal particle with an arbitrary embedded source.
    Barton JP
    J Opt Soc Am A Opt Image Sci Vis; 2000 Mar; 17(3):458-64. PubMed ID: 10708026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal and near-surface electromagnetic fields for a dielectric spheroid illuminated by a zero-order Bessel beam.
    Han L; Han Y; Wang J; Cui Z
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):1946-55. PubMed ID: 25401433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic field for a beam incident on two adjacent spherical particles.
    Barton JP; Ma W; Schaub SA; Alexander DR
    Appl Opt; 1991 Nov; 30(33):4706-15. PubMed ID: 20717273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic-field calculations for irregularly shaped, layered cylindrical particles with focused illumination.
    Barton JP
    Appl Opt; 1997 Feb; 36(6):1312-9. PubMed ID: 18250805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering properties of spheroidal particles.
    Asano S
    Appl Opt; 1979 Mar; 18(5):712-23. PubMed ID: 20208804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination.
    Han Y; Gréhan G; Gouesbet G
    Appl Opt; 2003 Nov; 42(33):6621-9. PubMed ID: 14658463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actual focal length of a symmetric biconvex microlens and its application in determining the transmitted beam waist position.
    Wang J; Barton JP
    Appl Opt; 2010 Oct; 49(30):5828-36. PubMed ID: 20962947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New calculation of surface wave contributions associated with mie backscattering.
    Inada H
    Appl Opt; 1973 Jul; 12(7):1516-23. PubMed ID: 20125556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates.
    Xu F; Ren K; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):109-18. PubMed ID: 17164849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light scattering by a core-mantle spheroidal particle.
    Farafonov VG; Voshchinnikov NV; Somsikov VV
    Appl Opt; 1996 Sep; 35(27):5412-26. PubMed ID: 21127540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-field calculations for a rigid spheroid with an arbitrary incident acoustic field.
    Barton JP; Wolff NL; Zhang H; Tarawneh C
    J Acoust Soc Am; 2003 Mar; 113(3):1216-22. PubMed ID: 12656356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation torque on a birefringent sphere caused by an electromagnetic wave.
    Liu M; Ji N; Lin Z; Chui ST
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056610. PubMed ID: 16383774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex dielectric response of ellipsoidal particles with surface conduction.
    Bertrand EA; Endres AL
    J Chem Phys; 2009 Jun; 130(22):224705. PubMed ID: 19530782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.