These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A high resolution scanning confocal interferometer. Johnson JR Appl Opt; 1968 Jun; 7(6):1061-72. PubMed ID: 20068741 [TBL] [Abstract][Full Text] [Related]
4. Accurate measurement of the radius of curvature of a concave mirror and the power dependence in a high-finesse Fabry-Perot interferometer. Uehara N; Ueda K Appl Opt; 1995 Sep; 34(25):5611-9. PubMed ID: 21060387 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones. Beard PC; Hurrell AM; Mills TN IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538 [TBL] [Abstract][Full Text] [Related]
6. Scanning Fabry-Pérot interferometer with largely tuneable free spectral range for high resolution spectroscopy of single quantum dots. Abbarchi M; Kuroda T; Duval R; Mano T; Sakoda K Rev Sci Instrum; 2011 Jul; 82(7):073103. PubMed ID: 21806168 [TBL] [Abstract][Full Text] [Related]
7. Reflective high-finesse interferometers as effective intrapulse laser frequency stabilizers. Palange E; Salvetti G Opt Lett; 1990 Jun; 15(12):676-8. PubMed ID: 19768044 [TBL] [Abstract][Full Text] [Related]
8. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer. Beard PC; Mills TN Appl Opt; 1996 Feb; 35(4):663-75. PubMed ID: 21069054 [TBL] [Abstract][Full Text] [Related]
12. Experimental study of the effect of surface defects on the finesse and contrast of a Fabry-Perot interferometer. Palik ED; Boukari H; Gammon RW Appl Opt; 1996 Jan; 35(1):38-50. PubMed ID: 21068975 [TBL] [Abstract][Full Text] [Related]
13. Development of stable monolithic wide-field Michelson interferometers. Wan X; Ge J; Chen Z Appl Opt; 2011 Jul; 50(21):4105-14. PubMed ID: 21772398 [TBL] [Abstract][Full Text] [Related]
14. Radiation-pressure cooling and optomechanical instability of a micromirror. Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A Nature; 2006 Nov; 444(7115):71-4. PubMed ID: 17080085 [TBL] [Abstract][Full Text] [Related]
15. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence. Brewin MP; Pike LC; Rowland DE; Birch MJ Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021 [TBL] [Abstract][Full Text] [Related]
16. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity. Locke CR; Stuart D; Ivanov EN; Luiten AN Opt Express; 2009 Nov; 17(24):21935-43. PubMed ID: 19997438 [TBL] [Abstract][Full Text] [Related]
17. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity. Nakagawa K; Shelkovnikov AS; Katsuda T; Ohtsu M Appl Opt; 1994 Sep; 33(27):6383-6. PubMed ID: 20941174 [TBL] [Abstract][Full Text] [Related]
18. Optical coherence effects on a fiber-sensing Fabry-Perot interferometer. Ohtsuka Y Appl Opt; 1982 Dec; 21(23):4316-20. PubMed ID: 20401061 [TBL] [Abstract][Full Text] [Related]
19. Collinear interferometer with variable delay for carrier-envelope offset frequency measurement. Pawłowska M; Ozimek F; Fita P; Radzewicz C Rev Sci Instrum; 2009 Aug; 80(8):083101. PubMed ID: 19725640 [TBL] [Abstract][Full Text] [Related]
20. Design and performance of cryogenic, scanning Fabry-Perot interferometers for the Long-Wavelength Spectrometer on the Infrared Space Observatory. Davis GR; Furniss I; Towlson WA; Ade PA; Emery RJ; Glencross WM; Naylor DA; Patrick TJ; Sidey RC; Swinyard BM Appl Opt; 1995 Jan; 34(1):92-107. PubMed ID: 20963088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]