These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21069224)

  • 1. Phosphorus run-off assessment in a watershed.
    Chebud Y; Naja GM; Rivero R
    J Environ Monit; 2011 Jan; 13(1):66-73. PubMed ID: 21069224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.
    Wu L; Long TY; Li CM
    Water Sci Technol; 2010; 61(6):1601-16. PubMed ID: 20351440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed.
    Richards CE; Munster CL; Vietor DM; Arnold JG; White R
    J Environ Manage; 2008 Jan; 86(1):229-45. PubMed ID: 17298864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Modelling pollutant loads and management alternatives in Jiulong River watershed with AnnAGNPS].
    Hong HS; Huang JL; Zhang LP; Du PF
    Huan Jing Ke Xue; 2005 Jul; 26(4):63-9. PubMed ID: 16212170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus export by runoff from agricultural field plots with different crop cover in Lake Taihu watershed.
    Yan WJ; Huang MX; Zhang S; Tang YJ
    J Environ Sci (China); 2001 Oct; 13(4):502-7. PubMed ID: 11723941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling phosphorus transport in an agricultural watershed using the WEPP model.
    Perez-Bidegain M; Helmers MJ; Cruse R
    J Environ Qual; 2010; 39(6):2121-9. PubMed ID: 21284310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling phosphorus in the Lake Allatoona watershed using SWAT: II. Effect of land use change.
    Lin Z; Radcliffe DE; Risse LM; Romeis JJ; Jackson CR
    J Environ Qual; 2009; 38(1):121-9. PubMed ID: 19141801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling phosphorus in the Lake Allatoona watershed using SWAT: I. Developing phosphorus parameter values.
    Radcliffe DE; Lin Z; Risse LM; Romeis JJ; Jackson CR
    J Environ Qual; 2009; 38(1):111-20. PubMed ID: 19141800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model.
    Alexander RB; Smith RA; Schwarz GE
    Water Sci Technol; 2004; 49(3):1-10. PubMed ID: 15053093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spatial analysis of phosphorus in the Mississippi river basin.
    Jacobson LM; David MB; Drinkwater LE
    J Environ Qual; 2011; 40(3):931-41. PubMed ID: 21546679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of pollutant loads from urban roadway runoff.
    Wada K; Fujii S
    Water Sci Technol; 2010; 61(2):345-54. PubMed ID: 20107261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.
    Wu Y; Liu S
    J Environ Monit; 2012 Sep; 14(9):2350-61. PubMed ID: 22790209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling a phosphorus credit trading program in an agricultural watershed.
    Corrales J; Naja GM; Bhat MG; Miralles-Wilhelm F
    J Environ Manage; 2014 Oct; 143():162-72. PubMed ID: 24907668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.
    Greene S; Taylor D; McElarney YR; Foy RH; Jordan P
    Sci Total Environ; 2011 May; 409(11):2211-21. PubMed ID: 21429559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydrodynamically rough grassed waterways on dissolved reactive phosphorus loads coming from agricultural watersheds.
    Fiener P; Auerswald K
    J Environ Qual; 2009; 38(2):548-59. PubMed ID: 19202025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study.
    Haygarth PM; Wood FL; Heathwaite AL; Butler PJ
    Sci Total Environ; 2005 May; 344(1-3):83-106. PubMed ID: 15907512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of agricultural phosphorus use in catchments on shallow lake water quality: About buffers, time delays and equilibria.
    Schippers P; van de Weerd H; de Klein J; de Jong B; Scheffer M
    Sci Total Environ; 2006 Oct; 369(1-3):280-94. PubMed ID: 16781763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TREX: spatially distributed model to assess watershed contaminant transport and fate.
    Velleux ML; England JF; Julien PY
    Sci Total Environ; 2008 Oct; 404(1):113-28. PubMed ID: 18649925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA.
    Meals DW; Hopkins RB
    Water Sci Technol; 2002; 45(9):51-60. PubMed ID: 12079124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of runoff and nutrient export from a typical small watershed in China using the Hydrological Simulation Program-Fortran.
    Li Z; Liu H; Luo C; Li Y; Li H; Pan J; Jiang X; Zhou Q; Xiong Z
    Environ Sci Pollut Res Int; 2015 May; 22(10):7954-66. PubMed ID: 25516253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.