These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 21069558)
1. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558 [TBL] [Abstract][Full Text] [Related]
2. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. Schumacher M; Deisinger U; Detsch R; Ziegler G J Mater Sci Mater Med; 2010 Dec; 21(12):3119-27. PubMed ID: 20953674 [TBL] [Abstract][Full Text] [Related]
3. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. Schumacher M; Uhl F; Detsch R; Deisinger U; Ziegler G J Mater Sci Mater Med; 2010 Nov; 21(11):3039-48. PubMed ID: 20857322 [TBL] [Abstract][Full Text] [Related]
4. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
6. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Denry I; Kuhn LT Dent Mater; 2016 Jan; 32(1):43-53. PubMed ID: 26423007 [TBL] [Abstract][Full Text] [Related]
7. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Le Nihouannen D; Guehennec LL; Rouillon T; Pilet P; Bilban M; Layrolle P; Daculsi G Biomaterials; 2006 May; 27(13):2716-22. PubMed ID: 16378638 [TBL] [Abstract][Full Text] [Related]
8. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
10. Microporosities in 3D-Printed Tricalcium-Phosphate-Based Bone Substitutes Enhance Osteoconduction and Affect Osteoclastic Resorption. Ghayor C; Chen TH; Bhattacharya I; Özcan M; Weber FE Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33291724 [TBL] [Abstract][Full Text] [Related]
11. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. Wilson CE; de Bruijn JD; van Blitterswijk CA; Verbout AJ; Dhert WJ J Biomed Mater Res A; 2004 Jan; 68(1):123-32. PubMed ID: 14661257 [TBL] [Abstract][Full Text] [Related]
12. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. Ambrosio AM; Sahota JS; Khan Y; Laurencin CT J Biomed Mater Res; 2001 May; 58(3):295-301. PubMed ID: 11319744 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142 [TBL] [Abstract][Full Text] [Related]
15. Novel antimicrobial phosphate-free glass-ceramic scaffolds for bone tissue regeneration. Suárez M; Fernández-García E; Fernández A; López-Píriz R; Díaz R; Torrecillas R Sci Rep; 2020 Aug; 10(1):13171. PubMed ID: 32826917 [TBL] [Abstract][Full Text] [Related]
16. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
17. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
18. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Bertol LS; Schabbach R; Loureiro Dos Santos LA J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883 [TBL] [Abstract][Full Text] [Related]
19. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Navarro M; del Valle S; Martínez S; Zeppetelli S; Ambrosio L; Planell JA; Ginebra MP Biomaterials; 2004 Aug; 25(18):4233-41. PubMed ID: 15046913 [TBL] [Abstract][Full Text] [Related]
20. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. Bouler JM; Trécant M; Delécrin J; Royer J; Passuti N; Daculsi G J Biomed Mater Res; 1996 Dec; 32(4):603-9. PubMed ID: 8953150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]