BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21069889)

  • 1. A biodegradable and biocompatible regular nanopattern for large-scale selective cell growth.
    Csaderova L; Martines E; Seunarine K; Gadegaard N; Wilkinson CD; Riehle MO
    Small; 2010 Dec; 6(23):2755-61. PubMed ID: 21069889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotopographical guidance of C6 glioma cell alignment and oriented growth.
    Zhu B; Zhang Q; Lu Q; Xu Y; Yin J; Hu J; Wang Z
    Biomaterials; 2004 Aug; 25(18):4215-23. PubMed ID: 15046911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell interaction with three-dimensional sharp-tip nanotopography.
    Choi CH; Hagvall SH; Wu BM; Dunn JC; Beygui RE; CJ Kim CJ
    Biomaterials; 2007 Mar; 28(9):1672-9. PubMed ID: 17174392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of nanotopography for biomaterials on cell behaviors].
    Meng J; Zhu G; Xu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):685-9. PubMed ID: 17713289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopattern insert molding.
    Kim SH; Jeong JH; Youn JR
    Nanotechnology; 2010 May; 21(20):205302. PubMed ID: 20413839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands.
    Dalby MJ; Yarwood SJ; Riehle MO; Johnstone HJ; Affrossman S; Curtis AS
    Exp Cell Res; 2002 May; 276(1):1-9. PubMed ID: 11978003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cells preferentially grow on rough substrates.
    Gentile F; Tirinato L; Battista E; Causa F; Liberale C; di Fabrizio EM; Decuzzi P
    Biomaterials; 2010 Oct; 31(28):7205-12. PubMed ID: 20637503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion.
    Loesberg WA; te Riet J; van Delft FC; Schön P; Figdor CG; Speller S; van Loon JJ; Walboomers XF; Jansen JA
    Biomaterials; 2007 Sep; 28(27):3944-51. PubMed ID: 17576010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot embossing for micropatterned cell substrates.
    Charest JL; Bryant LE; Garcia AJ; King WP
    Biomaterials; 2004 Aug; 25(19):4767-75. PubMed ID: 15120523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of cells and bacteria with surfaces structured at the nanometre scale.
    Anselme K; Davidson P; Popa AM; Giazzon M; Liley M; Ploux L
    Acta Biomater; 2010 Oct; 6(10):3824-46. PubMed ID: 20371386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving endothelial cell adhesion and proliferation on titanium by sol-gel derived oxide coating.
    Chai F; Ochsenbein A; Traisnel M; Busch R; Breme J; Hildebrand HF
    J Biomed Mater Res A; 2010 Feb; 92(2):754-65. PubMed ID: 19274713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features.
    Lu J; Rao MP; MacDonald NC; Khang D; Webster TJ
    Acta Biomater; 2008 Jan; 4(1):192-201. PubMed ID: 17851147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response.
    Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D
    J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversed cell imprinting, AFM imaging and adhesion analyses of cells on patterned surfaces.
    Zhou X; Shi J; Zhang F; Hu J; Li X; Wang L; Ma X; Chen Y
    Lab Chip; 2010 May; 10(9):1182-8. PubMed ID: 20390138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro.
    Xie Y; Sproule T; Li Y; Powell H; Lannutti JJ; Kniss DA
    J Biomed Mater Res; 2002 Aug; 61(2):234-45. PubMed ID: 12007204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion.
    Liu L; Chen S; Giachelli CM; Ratner BD; Jiang S
    J Biomed Mater Res A; 2005 Jul; 74(1):23-31. PubMed ID: 15920735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of human cells on polyethersulfone (PES) hollow fiber membranes.
    Unger RE; Huang Q; Peters K; Protzer D; Paul D; Kirkpatrick CJ
    Biomaterials; 2005 May; 26(14):1877-84. PubMed ID: 15576161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography.
    Zinger O; Anselme K; Denzer A; Habersetzer P; Wieland M; Jeanfils J; Hardouin P; Landolt D
    Biomaterials; 2004 Jun; 25(14):2695-711. PubMed ID: 14962549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.