BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 21070024)

  • 1. Overall charge and local charge density of pectin determines the enthalpic and entropic contributions to complexation with β-lactoglobulin.
    Sperber BL; Cohen Stuart MA; Schols HA; Voragen AG; Norde W
    Biomacromolecules; 2010 Dec; 11(12):3578-83. PubMed ID: 21070024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of beta-lactoglobulin to pectins varying in their overall and local charge density.
    Sperber BL; Stuart MA; Schols HA; Voragen AG; Norde W
    Biomacromolecules; 2009 Dec; 10(12):3246-52. PubMed ID: 19904952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic parameters of beta-lactoglobulin-pectin complexes assessed by isothermal titration calorimetry.
    Girard M; Turgeon SL; Gauthier SF
    J Agric Food Chem; 2003 Jul; 51(15):4450-5. PubMed ID: 12848524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mechanism of complex assemblies: characterisation of beta-lactoglobulin and pectin interactions.
    Xu AY; Melton LD; Jameson GB; Williams MA; McGillivray DJ
    Soft Matter; 2015 Sep; 11(34):6790-9. PubMed ID: 26223829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between beta-lactoglobulin and pectins during in vitro gastric hydrolysis.
    Nacer A; Sanchez C; Villaume C; Mejean L; Mouecoucou J
    J Agric Food Chem; 2004 Jan; 52(2):355-60. PubMed ID: 14733521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex coacervation between lysozyme and pectin: Effect of pH, salt, and biopolymer ratio.
    Souza CJF; da Costa AR; Souza CF; Tosin FFS; Garcia-Rojas EE
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1253-1260. PubMed ID: 29017886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes.
    Guzey D; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(2):475-85. PubMed ID: 17227082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-Lactoglobulin nanofibrils can be assembled into nanotapes via site-specific interactions with pectin.
    Hettiarachchi CA; Melton LD; McGillivray DJ; Loveday SM; Gerrard JA; Williams MA
    Soft Matter; 2016 Jan; 12(3):756-68. PubMed ID: 26517088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure of beta-lactoglobulin/pectin coacervates studied by small-angle neutron scattering.
    Wang X; Li Y; Wang YW; Lal J; Huang Q
    J Phys Chem B; 2007 Jan; 111(3):515-20. PubMed ID: 17228908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the interactions between beta-lactoglobulin and pectin through capillary electrophoresis analysis.
    Girard M; Turgeon SL; Gauthier SF
    J Agric Food Chem; 2003 Sep; 51(20):6043-9. PubMed ID: 13129314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sulphate, chloride, and thiocyanate salts on formation of β-lactoglobulin-pectin microgels.
    Hirt S; Jones OG; Adijanto M; Gilbert J
    Food Chem; 2014 Dec; 164():63-9. PubMed ID: 24996306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of protein-polysaccharide nanoparticle fabrication methods: impact of biopolymer complexation before or after particle formation.
    Jones OG; Decker EA; McClements DJ
    J Colloid Interface Sci; 2010 Apr; 344(1):21-9. PubMed ID: 20045114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of molecular interactions between β-lactoglobulin and sugar beet pectin by multi-detection HPSEC.
    Qi PX; Chau HK; Fishman ML; Wickham ED; Hotchkiss AT
    Carbohydr Polym; 2014 Jul; 107():198-208. PubMed ID: 24702936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology of complexes formed between β-lactoglobulin nanofibrils and pectins is influenced by the pH and structural characteristics of the pectins.
    Hettiarachchi CA; Melton LD; Williams MA; McGillivray DJ; Gerrard JA; Loveday SM
    Biopolymers; 2016 Nov; 105(11):819-31. PubMed ID: 27422378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes.
    Moreau L; Kim HJ; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Oct; 51(22):6612-7. PubMed ID: 14558785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of salt concentration on formation and dissociation of beta-lactoglobulin/pectin complexes.
    Wang X; Wang YW; Ruengruglikit C; Huang Q
    J Agric Food Chem; 2007 Dec; 55(25):10432-6. PubMed ID: 17979233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH on the molecular binding between β-lactoglobulin and bixin.
    Zhang Y; Wright E; Zhong Q
    J Agric Food Chem; 2013 Jan; 61(4):947-54. PubMed ID: 23297828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associative phase separation of beta-lactoglobulin/pectin solutions: a kinetic study by small angle static light scattering.
    Girard M; Sanchez C; Laneuville SI; Turgeon SL; Gauthier SF
    Colloids Surf B Biointerfaces; 2004 May; 35(1):15-22. PubMed ID: 15261050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition and rheological properties of beta-Lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio.
    Wang X; Lee J; Wang YW; Huang Q
    Biomacromolecules; 2007 Mar; 8(3):992-7. PubMed ID: 17305391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexes of β-lactoglobulin and high methyl-esterified pectin as a one-shot delivery system for reinforcing oil/water interfaces.
    Ramamirtham S; Williams MAK; Zare D; Weeks M; Whitby CP
    Soft Matter; 2021 Sep; 17(37):8517-8522. PubMed ID: 34494060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.