These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis. Choi JH; Cho M J Chem Phys; 2004 Mar; 120(9):4383-92. PubMed ID: 15268607 [TBL] [Abstract][Full Text] [Related]
6. Ab initio-based exciton model of amide I vibrations in peptides: definition, conformational dependence, and transferability. Gorbunov RD; Kosov DS; Stock G J Chem Phys; 2005 Jun; 122(22):224904. PubMed ID: 15974713 [TBL] [Abstract][Full Text] [Related]
7. Determination of conformational preferences of dipeptides using vibrational spectroscopy. Grdadolnik J; Grdadolnik SG; Avbelj F J Phys Chem B; 2008 Mar; 112(9):2712-8. PubMed ID: 18260662 [TBL] [Abstract][Full Text] [Related]
8. Single-conformation infrared spectra of model peptides in the amide I and amide II regions: experiment-based determination of local mode frequencies and inter-mode coupling. Buchanan EG; James WH; Choi SH; Guo L; Gellman SH; Müller CW; Zwier TS J Chem Phys; 2012 Sep; 137(9):094301. PubMed ID: 22957563 [TBL] [Abstract][Full Text] [Related]
9. The anharmonic vibrational potential and relaxation pathways of the amide I and II modes of N-methylacetamide. DeFlores LP; Ganim Z; Ackley SF; Chung HS; Tokmakoff A J Phys Chem B; 2006 Sep; 110(38):18973-80. PubMed ID: 16986892 [TBL] [Abstract][Full Text] [Related]
10. Carbon-deuterium vibrational probes of peptide conformation: alanine dipeptide and glycine dipeptide. Miller CS; Ploetz EA; Cremeens ME; Corcelli SA J Chem Phys; 2009 Mar; 130(12):125103. PubMed ID: 19334896 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the amide-I local modes in gamma- and beta-turns of peptides. Wang J Phys Chem Chem Phys; 2009 Jul; 11(26):5310-22. PubMed ID: 19551198 [TBL] [Abstract][Full Text] [Related]
12. Nonadiabatic effects on peptide vibrational dynamics induced by conformational changes. Antony J; Schmidt B; Schütte C J Chem Phys; 2005 Jan; 122(1):14309. PubMed ID: 15638661 [TBL] [Abstract][Full Text] [Related]
13. Instantaneous normal mode analysis of the vibrational relaxation of the amide I mode of alanine dipeptide in water. Farag MH; Zúñiga J; Requena A; Bastida A J Chem Phys; 2013 May; 138(20):205102. PubMed ID: 23742520 [TBL] [Abstract][Full Text] [Related]
14. Toward detecting the formation of a single helical turn by 2D IR cross peaks between the amide-I and -II modes. Maekawa H; De Poli M; Moretto A; Toniolo C; Ge NH J Phys Chem B; 2009 Aug; 113(34):11775-86. PubMed ID: 19642666 [TBL] [Abstract][Full Text] [Related]
15. Modeling the vibrational dynamics and nonlinear infrared spectra of coupled amide I and II modes in peptides. Dijkstra AG; Jansen Tl; Knoester J J Phys Chem B; 2011 May; 115(18):5392-401. PubMed ID: 21208013 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides. Cai K; Han C; Wang J Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835 [TBL] [Abstract][Full Text] [Related]
17. A local-mode model for understanding the dependence of the extended amide III vibrations on protein secondary structure. Weymuth T; Jacob CR; Reiher M J Phys Chem B; 2010 Aug; 114(32):10649-60. PubMed ID: 20666431 [TBL] [Abstract][Full Text] [Related]
19. Linear and two-dimensional infrared spectroscopic study of the amide I and II modes in fully extended peptide chains. Maekawa H; Ballano G; Toniolo C; Ge NH J Phys Chem B; 2011 May; 115(18):5168-82. PubMed ID: 20845957 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study of internal field effects on peptide amide I modes. Lee H; Kim SS; Choi JH; Cho M J Phys Chem B; 2005 Mar; 109(11):5331-40. PubMed ID: 16863199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]