BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21070068)

  • 1. Identification of potentially involved proteins in levofloxacin resistance mechanisms in Coxiella burnetii.
    Vranakis I; De Bock PJ; Papadioti A; Tselentis Y; Gevaert K; Tsiotis G; Psaroulaki A
    J Proteome Res; 2011 Feb; 10(2):756-62. PubMed ID: 21070068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling persistent host cell infection with Coxiella burnetii by quantitative proteomics.
    Vranakis I; De Bock PJ; Papadioti A; Samoilis G; Tselentis Y; Gevaert K; Tsiotis G; Psaroulaki A
    J Proteome Res; 2011 Sep; 10(9):4241-51. PubMed ID: 21790200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA gyrase and topoisomerase IV mutations in an in vitro fluoroquinolone-resistant Coxiella burnetii strain.
    Vranakis I; Sandalakis V; Chochlakis D; Tselentis Y; Psaroulaki A
    Microb Drug Resist; 2010 Jun; 16(2):111-7. PubMed ID: 20438350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the whole cell lysate of two Coxiella burnetii strains using N-terminomics.
    Papadioti A; De Bock PJ; Vranakis I; Tselentis Y; Gevaert K; Psaroulaki A; Tsiotis G
    J Proteome Res; 2012 Jun; 11(6):3150-9. PubMed ID: 22559236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of whole cell lysate from the intercellular bacterium Coxiella burnetii using two gel-based protein separation techniques.
    Samoilis G; Psaroulaki A; Vougas K; Tselentis Y; Tsiotis G
    J Proteome Res; 2007 Aug; 6(8):3032-41. PubMed ID: 17602512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic screening for possible effector molecules secreted by the obligate intracellular pathogen Coxiella burnetii.
    Samoilis G; Aivaliotis M; Vranakis I; Papadioti A; Tselentis Y; Tsiotis G; Psaroulaki A
    J Proteome Res; 2010 Mar; 9(3):1619-26. PubMed ID: 20044831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteome profiling of C. burnetii under tetracycline stress conditions.
    Vranakis I; De Bock PJ; Papadioti A; Tselentis Y; Gevaert K; Tsiotis G; Psaroulaki A
    PLoS One; 2012; 7(3):e33599. PubMed ID: 22438959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of resistance to fluoroquinolones in Coxiella burnetii.
    Spyridaki I; Psaroulaki A; Kokkinakis E; Gikas A; Tselentis Y
    J Antimicrob Chemother; 2002 Feb; 49(2):379-82. PubMed ID: 11815583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of nitrosative stress resistance genes in Coxiella burnetii: Involvement of nucleotide excision repair.
    Park SH; Lee HW; Cao W
    Microb Pathog; 2010 Dec; 49(6):323-9. PubMed ID: 20705129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial peptide mass fingerprinting analysis of proteins obtained by lysis of Coxiella burnetii cells.
    Skultéty L; Hernychová L; Toman R; Kroca M; Stulík J; Macela A
    Acta Virol; 2004; 48(1):29-33. PubMed ID: 15230472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriostatic and bactericidal activity of levofloxacin against Rickettsia rickettsii, Rickettsia conorii, 'Israeli spotted fever group rickettsia' and Coxiella burnetii.
    Maurin M; Raoult D
    J Antimicrob Chemother; 1997 Jun; 39(6):725-30. PubMed ID: 9222041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro susceptibility of Coxiella burnetii to linezolid in comparison with its susceptibilities to quinolones, doxycycline, and clarithromycin.
    Gikas A; Spyridaki I; Scoulica E; Psaroulaki A; Tselentis Y
    Antimicrob Agents Chemother; 2001 Nov; 45(11):3276-8. PubMed ID: 11600400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro susceptibility of Coxiella burnetii to azithromycin, doxycycline, ciprofloxacin and a range of newer fluoroquinolones.
    Lever MS; Bewley KR; Dowsett B; Lloyd G
    Int J Antimicrob Agents; 2004 Aug; 24(2):194-6. PubMed ID: 15288324
    [No Abstract]   [Full Text] [Related]  

  • 14. Intracellular life of Coxiella burnetii in macrophages.
    Ghigo E; Pretat L; Desnues B; Capo C; Raoult D; Mege JL
    Ann N Y Acad Sci; 2009 May; 1166():55-66. PubMed ID: 19538264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and identification of Coxiella burnetii based on the mass spectrometric analyses of the extracted proteins.
    Hernychova L; Toman R; Ciampor F; Hubalek M; Vackova J; Macela A; Skultety L
    Anal Chem; 2008 Sep; 80(18):7097-104. PubMed ID: 18707130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages.
    Voth DE; Howe D; Heinzen RA
    Infect Immun; 2007 Sep; 75(9):4263-71. PubMed ID: 17606599
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Moormeier DE; Sandoz KM; Beare PA; Sturdevant DE; Nair V; Cockrell DC; Miller HE; Heinzen RA
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30745369
    [No Abstract]   [Full Text] [Related]  

  • 18. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics.
    Sandalakis V; Psaroulaki A; De Bock PJ; Christidou A; Gevaert K; Tsiotis G; Tselentis Y
    J Proteome Res; 2012 Apr; 11(4):2374-85. PubMed ID: 22360387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coxiella burnetii glycomics and proteomics--tools for linking structure to function.
    Toman R; Skultety L; Ihnatko R
    Ann N Y Acad Sci; 2009 May; 1166():67-78. PubMed ID: 19538265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanosoma cruzi cell invasion and traffic: influence of Coxiella burnetii and pH in a comparative study between distinct infective forms.
    Fernandes MC; L'Abbate C; Kindro Andreoli W; Mortara RA
    Microb Pathog; 2007 Jul; 43(1):22-36. PubMed ID: 17448629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.