These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 21070245)
1. Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. Vargas WA; Crutcher FK; Kenerley CM New Phytol; 2011 Feb; 189(3):777-789. PubMed ID: 21070245 [TBL] [Abstract][Full Text] [Related]
2. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Vargas WA; Mandawe JC; Kenerley CM Plant Physiol; 2009 Oct; 151(2):792-808. PubMed ID: 19675155 [TBL] [Abstract][Full Text] [Related]
3. Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. Malinich EA; Wang K; Mukherjee PK; Kolomiets M; Kenerley CM BMC Genomics; 2019 Apr; 20(1):280. PubMed ID: 30971198 [TBL] [Abstract][Full Text] [Related]
4. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. Gabriel-Neumann E; Neumann G; Leggewie G; George E J Plant Physiol; 2011 Jun; 168(9):911-9. PubMed ID: 21382646 [TBL] [Abstract][Full Text] [Related]
5. Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. Morán-Diez ME; Trushina N; Lamdan NL; Rosenfelder L; Mukherjee PK; Kenerley CM; Horwitz BA BMC Genomics; 2015 Jan; 16(1):8. PubMed ID: 25608961 [TBL] [Abstract][Full Text] [Related]
6. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. Guzmán-Guzmán P; Alemán-Duarte MI; Delaye L; Herrera-Estrella A; Olmedo-Monfil V BMC Genet; 2017 Feb; 18(1):16. PubMed ID: 28201981 [TBL] [Abstract][Full Text] [Related]
7. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Djonovic S; Vargas WA; Kolomiets MV; Horndeski M; Wiest A; Kenerley CM Plant Physiol; 2007 Nov; 145(3):875-89. PubMed ID: 17885089 [TBL] [Abstract][Full Text] [Related]
8. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Fang W; St Leger RJ Plant Physiol; 2010 Nov; 154(3):1549-57. PubMed ID: 20837701 [TBL] [Abstract][Full Text] [Related]
9. A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Crutcher FK; Moran-Diez ME; Ding S; Liu J; Horwitz BA; Mukherjee PK; Kenerley CM Fungal Biol; 2015 Jun; 119(6):476-86. PubMed ID: 25986544 [TBL] [Abstract][Full Text] [Related]
10. Insights into Metabolic Changes Caused by the Schweiger R; Padilla-Arizmendi F; Nogueira-López G; Rostás M; Lawry R; Brown C; Hampton J; Steyaert JM; Müller C; Mendoza-Mendoza A Mol Plant Microbe Interact; 2021 May; 34(5):524-537. PubMed ID: 33166203 [TBL] [Abstract][Full Text] [Related]
11. Trichoderma atroviride-emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. Esparza-Reynoso S; Ruíz-Herrera LF; Pelagio-Flores R; Macías-Rodríguez LI; Martínez-Trujillo M; López-Coria M; Sánchez-Nieto S; Herrera-Estrella A; López-Bucio J Plant Cell Environ; 2021 Jun; 44(6):1961-1976. PubMed ID: 33529396 [TBL] [Abstract][Full Text] [Related]
12. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. Wahl R; Wippel K; Goos S; Kämper J; Sauer N PLoS Biol; 2010 Feb; 8(2):e1000303. PubMed ID: 20161717 [TBL] [Abstract][Full Text] [Related]
13. Living the sweet life: how does a plant pathogenic fungus acquire sugar from plants? Talbot NJ PLoS Biol; 2010 Feb; 8(2):e1000308. PubMed ID: 20161721 [No Abstract] [Full Text] [Related]
14. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Doidy J; van Tuinen D; Lamotte O; Corneillat M; Alcaraz G; Wipf D Mol Plant; 2012 Nov; 5(6):1346-58. PubMed ID: 22930732 [TBL] [Abstract][Full Text] [Related]
15. Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Lamdan NL; Shalaby S; Ziv T; Kenerley CM; Horwitz BA Mol Cell Proteomics; 2015 Apr; 14(4):1054-63. PubMed ID: 25681119 [TBL] [Abstract][Full Text] [Related]
16. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant. Romão-Dumaresq AS; Dourado MN; Fávaro LC; Mendes R; Ferreira A; Araújo WL PLoS One; 2016; 11(7):e0158974. PubMed ID: 27415014 [TBL] [Abstract][Full Text] [Related]
17. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Garcia K; Doidy J; Zimmermann SD; Wipf D; Courty PE Trends Plant Sci; 2016 Nov; 21(11):937-950. PubMed ID: 27514454 [TBL] [Abstract][Full Text] [Related]
18. Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. Gaderer R; Lamdan NL; Frischmann A; Sulyok M; Krska R; Horwitz BA; Seidl-Seiboth V BMC Microbiol; 2015 Jan; 15(1):2. PubMed ID: 25591782 [TBL] [Abstract][Full Text] [Related]
19. Comparative Phenotypic, Genomic, and Transcriptomic Analyses of Two Contrasting Strains of the Plant Beneficial Fungus Pachauri S; Zaid R; Sherkhane PD; Easa J; Viterbo A; Chet I; Horwitz BA; Mukherjee PK Microbiol Spectr; 2023 Jan; 11(2):e0302422. PubMed ID: 36719232 [TBL] [Abstract][Full Text] [Related]