These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 2107059)
1. The effects of 5% carbon dioxide on the quantitative analysis of long-term pathology of the brain after surface hypothermia. Ohmi M; Sato S; Ito T; Haneda K; Mohri H Cryobiology; 1990 Feb; 27(1):31-41. PubMed ID: 2107059 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures. Mezrow CK; Midulla PS; Sadeghi AM; Gandsas A; Wang W; Dapunt OE; Zappulla R; Griepp RB J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1006-19. PubMed ID: 8159021 [TBL] [Abstract][Full Text] [Related]
3. Differences in intraischemic temperature influence neurological outcome after deep hypothermic circulatory arrest in newborn dogs. Mujsce DJ; Towfighi J; Heitjan DF; Vannucci RC Stroke; 1994 Jul; 25(7):1433-41; discussion 1442. PubMed ID: 8023360 [TBL] [Abstract][Full Text] [Related]
4. Prolongation of the safe interval of hypothermic circulatory arrest: 90 minutes. Haneda K; Sands MP; Thomas R; Hessel EA; Dillard DH J Cardiovasc Surg (Torino); 1983; 24(1):15-21. PubMed ID: 6833347 [TBL] [Abstract][Full Text] [Related]
5. Circulatory dynamics during surface-induced hypothermia under halothane-ether azeotrope anesthesia. Haneda K; Sands MP; Thomas R; Merrick SH; Hessel EA; Dillard DH Ann Thorac Surg; 1982 Mar; 33(3):258-66. PubMed ID: 6803689 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of the effects of carbon dioxide and perfusion rewarming on limited circulatory occlusion during surface hypothermia, under halothane and ether anesthesia. Sato S; Vanini V; Mori H; Merendino KA Ann Surg; 1974 Aug; 180(2):192-7. PubMed ID: 4858391 [TBL] [Abstract][Full Text] [Related]
7. The importance of appropriate concentrations of inspired carbon dioxide on induced hypothermia under halothane-ether azeotrope anesthesia. Haneda K; Thomas R; Breazeale DG; Sands MP; Dillard DH J Cardiovasc Surg (Torino); 1984; 25(1):67-74. PubMed ID: 6423647 [TBL] [Abstract][Full Text] [Related]
8. Blood and brain tissue gaseous strategy for profoundly hypothermic total circulatory arrest. Watanabe T; Miura M; Inui K; Minowa T; Shimanuki T; Nishimura K; Washio M J Thorac Cardiovasc Surg; 1991 Oct; 102(4):497-504. PubMed ID: 1921430 [TBL] [Abstract][Full Text] [Related]
9. Prolongation of total permissible circulatory arrest duration by deep hypothermic intermittent circulatory arrest. Niwa H; Nara M; Kimura T; Chiba Y; Ihaya A; Morioka K; Uesaka T; Tsuda T; Muraoka R J Thorac Cardiovasc Surg; 1998 Jul; 116(1):163-70. PubMed ID: 9671911 [TBL] [Abstract][Full Text] [Related]
10. Effect of intermittent deep hypothermic circulatory arrest on brain metabolism. Kimura T; Muraoka R; Chiba Y; Ihaya A; Morioka K J Thorac Cardiovasc Surg; 1994 Oct; 108(4):658-63. PubMed ID: 7934099 [TBL] [Abstract][Full Text] [Related]
11. Profound hypothermia (less than 10 degrees C) compared with deep hypothermia (15 degrees C) improves neurologic outcome in dogs after two hours' circulatory arrest induced to enable resuscitative surgery. Tisherman SA; Safar P; Radovsky A; Peitzman A; Marrone G; Kuboyama K; Weinrauch V J Trauma; 1991 Aug; 31(8):1051-61; discussion 1061-2. PubMed ID: 1875431 [TBL] [Abstract][Full Text] [Related]
12. Cerebral anoxia: effect of deep hypothermia and pH. Norwood WI; Norwood CR; Castaneda AR Surgery; 1979 Aug; 86(2):203-9. PubMed ID: 37607 [TBL] [Abstract][Full Text] [Related]
13. Rapid hypothermic aortic flush can achieve survival without brain damage after 30 minutes cardiac arrest in dogs. Behringer W; Prueckner S; Kentner R; Tisherman SA; Radovsky A; Clark R; Stezoski SW; Henchir J; Klein E; Safar P Anesthesiology; 2000 Dec; 93(6):1491-9. PubMed ID: 11149445 [TBL] [Abstract][Full Text] [Related]
14. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205 [TBL] [Abstract][Full Text] [Related]
15. Leukocyte filtration improves brain protection after a prolonged period of hypothermic circulatory arrest: A study in a chronic porcine model. Rimpiläinen J; Pokela M; Kiviluoma K; Anttila V; Vainionpää V; Hirvonen J; Ohtonen P; Mennander A; Remes E; Juvonen T J Thorac Cardiovasc Surg; 2000 Dec; 120(6):1131-41. PubMed ID: 11088037 [TBL] [Abstract][Full Text] [Related]
16. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. Shin'oka T; Shum-Tim D; Jonas RA; Lidov HG; Laussen PC; Miura T; du Plessis A J Thorac Cardiovasc Surg; 1996 Dec; 112(6):1610-20; discussion 1620-1. PubMed ID: 8975853 [TBL] [Abstract][Full Text] [Related]
17. Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. Skaryak LA; Chai PJ; Kern FH; Greeley WJ; Ungerleider RM J Thorac Cardiovasc Surg; 1995 Dec; 110(6):1649-57. PubMed ID: 8523875 [TBL] [Abstract][Full Text] [Related]
18. Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs. Weinrauch V; Safar P; Tisherman S; Kuboyama K; Radovsky A Stroke; 1992 Oct; 23(10):1454-62. PubMed ID: 1412583 [TBL] [Abstract][Full Text] [Related]
19. Superior cerebral protection with profound hypothermia during circulatory arrest. Gillinov AM; Redmond JM; Zehr KJ; Troncoso JC; Arroyo S; Lesser RP; Lee AW; Stuart RS; Reitz BA; Baumgartner WA Ann Thorac Surg; 1993 Jun; 55(6):1432-9. PubMed ID: 8512392 [TBL] [Abstract][Full Text] [Related]
20. Determination of safe interval of circulatory arrest from the cerebral metabolic aspect. Iguchi A; Haneda K; Sato S; Horiuchi T Tohoku J Exp Med; 1986 Jun; 149(2):191-204. PubMed ID: 3750321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]