These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21070951)

  • 1. Detailed analysis of function divergence in a large and diverse domain superfamily: toward a refined protocol of function classification.
    Dessailly BH; Redfern OC; Cuff AL; Orengo CA
    Structure; 2010 Nov; 18(11):1522-35. PubMed ID: 21070951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural diversity of domain superfamilies in the CATH database.
    Reeves GA; Dallman TJ; Redfern OC; Akpor A; Orengo CA
    J Mol Biol; 2006 Jul; 360(3):725-41. PubMed ID: 16780872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: Implications for metabolic and signaling pathways.
    Rekha N; Machado SM; Narayanan C; Krupa A; Srinivasan N
    Proteins; 2005 Feb; 58(2):339-53. PubMed ID: 15562516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.
    Sudha G; Srinivasan N
    Proteins; 2016 Sep; 84(9):1190-202. PubMed ID: 27177429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The history of the CATH structural classification of protein domains.
    Sillitoe I; Dawson N; Thornton J; Orengo C
    Biochimie; 2015 Dec; 119():209-17. PubMed ID: 26253692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of yeast regulatory subunit: a glimpse into the evolution of PKA signaling.
    Rinaldi J; Wu J; Yang J; Ralston CY; Sankaran B; Moreno S; Taylor SS
    Structure; 2010 Nov; 18(11):1471-82. PubMed ID: 21070946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length variations amongst protein domain superfamilies and consequences on structure and function.
    Sandhya S; Rani SS; Pankaj B; Govind MK; Offmann B; Srinivasan N; Sowdhamini R
    PLoS One; 2009; 4(3):e4981. PubMed ID: 19333395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of protein functions and networks: a family-centric approach.
    Dessailly BH; Reid AJ; Yeats C; Lees JG; Cuff A; Orengo CA
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):745-50. PubMed ID: 19614587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.
    Chiang RA; Sali A; Babbitt PC
    PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of protein superfamilies and bacterial genome size.
    Ranea JA; Buchan DW; Thornton JM; Orengo CA
    J Mol Biol; 2004 Feb; 336(4):871-87. PubMed ID: 15095866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding evolutionary relations beyond superfamilies: fold-based superfamilies.
    Matsuda K; Nishioka T; Kinoshita K; Kawabata T; Go N
    Protein Sci; 2003 Oct; 12(10):2239-51. PubMed ID: 14500881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution and structural analysis of the Ca(2+) release-activated Ca(2+) channel subunit, Orai.
    Cai X
    J Mol Biol; 2007 May; 368(5):1284-91. PubMed ID: 17400243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive classification of the PIN domain-like superfamily.
    Matelska D; Steczkiewicz K; Ginalski K
    Nucleic Acids Res; 2017 Jul; 45(12):6995-7020. PubMed ID: 28575517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily.
    Dong Z; Zhou H; Tao P
    Protein Sci; 2018 Feb; 27(2):421-430. PubMed ID: 29052279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CATH hierarchy revisited-structural divergence in domain superfamilies and the continuity of fold space.
    Cuff A; Redfern OC; Greene L; Sillitoe I; Lewis T; Dibley M; Reid A; Pearl F; Dallman T; Todd A; Garratt R; Thornton J; Orengo C
    Structure; 2009 Aug; 17(8):1051-62. PubMed ID: 19679085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution.
    Greene LH; Lewis TE; Addou S; Cuff A; Dallman T; Dibley M; Redfern O; Pearl F; Nambudiry R; Reid A; Sillitoe I; Yeats C; Thornton JM; Orengo CA
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D291-7. PubMed ID: 17135200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms.
    Bordin N; Sillitoe I; Nallapareddy V; Rauer C; Lam SD; Waman VP; Sen N; Heinzinger M; Littmann M; Kim S; Velankar S; Steinegger M; Rost B; Orengo C
    Commun Biol; 2023 Feb; 6(1):160. PubMed ID: 36755055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.