BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21071083)

  • 1. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.
    Markovic ZM; Harhaji-Trajkovic LM; Todorovic-Markovic BM; Kepić DP; Arsikin KM; Jovanović SP; Pantovic AC; Dramićanin MD; Trajkovic VS
    Biomaterials; 2011 Feb; 32(4):1121-9. PubMed ID: 21071083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells.
    Marches R; Mikoryak C; Wang RH; Pantano P; Draper RK; Vitetta ES
    Nanotechnology; 2011 Mar; 22(9):095101. PubMed ID: 21258147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy.
    Lee C; Hong C; Kim H; Kang J; Zheng HM
    Photochem Photobiol; 2010; 86(4):981-9. PubMed ID: 20408983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticles grown on ionic liquid-functionalized single-walled carbon nanotubes: new materials for photothermal therapy.
    Meng L; Niu L; Li L; Lu Q; Fei Z; Dyson PJ
    Chemistry; 2012 Oct; 18(42):13314-9. PubMed ID: 22945763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody.
    Wang CH; Huang YJ; Chang CW; Hsu WM; Peng CA
    Nanotechnology; 2009 Aug; 20(31):315101. PubMed ID: 19597244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation.
    Zhang LL; Xiong Z; Zhao XS
    ACS Nano; 2010 Nov; 4(11):7030-6. PubMed ID: 21028785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-based photothermal agent for rapid and effective killing of bacteria.
    Wu MC; Deokar AR; Liao JH; Shih PY; Ling YC
    ACS Nano; 2013 Feb; 7(2):1281-90. PubMed ID: 23363079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.
    Zhou F; Wu S; Wu B; Chen WR; Xing D
    Small; 2011 Oct; 7(19):2727-35. PubMed ID: 21861293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells.
    Abdolahad M; Janmaleki M; Mohajerzadeh S; Akhavan O; Abbasi S
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1498-505. PubMed ID: 23827601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of fullerene-carbon nanotubes: temperature indicator for photothermal conversion.
    Shen Y; Skirtach AG; Seki T; Yagai S; Li H; Möhwald H; Nakanishi T
    J Am Chem Soc; 2010 Jun; 132(25):8566-8. PubMed ID: 20527750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.
    Liu S; Zeng TH; Hofmann M; Burcombe E; Wei J; Jiang R; Kong J; Chen Y
    ACS Nano; 2011 Sep; 5(9):6971-80. PubMed ID: 21851105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.
    Moon HK; Lee SH; Choi HC
    ACS Nano; 2009 Nov; 3(11):3707-13. PubMed ID: 19877694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.
    Hirsch A
    Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752
    [No Abstract]   [Full Text] [Related]  

  • 16. Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials.
    Miao W; Shim G; Lee S; Oh YK
    Biomaterials; 2014 Apr; 35(13):4058-65. PubMed ID: 24508077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sonochemical synthesis of TiO(2 nanoparticles on graphene for use as photocatalyst.
    Guo J; Zhu S; Chen Z; Li Y; Yu Z; Liu Q; Li J; Feng C; Zhang D
    Ultrason Sonochem; 2011 Sep; 18(5):1082-90. PubMed ID: 21482166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo.
    Sato Y; Yokoyama A; Shibata K; Akimoto Y; Ogino S; Nodasaka Y; Kohgo T; Tamura K; Akasaka T; Uo M; Motomiya K; Jeyadevan B; Ishiguro M; Hatakeyama R; Watari F; Tohji K
    Mol Biosyst; 2005 Jul; 1(2):176-82. PubMed ID: 16880981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
    Rodríguez-Manzo JA; Cretu O; Banhart F
    ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.