BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21071144)

  • 1. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation.
    Yang H; Jing L; Zhang B
    J Hazard Mater; 2011 Jan; 185(2-3):1405-11. PubMed ID: 21071144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.
    Zhang Y; Li H; Yu X
    J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting.
    Li C; Sun H; Bai J; Li L
    J Hazard Mater; 2010 Feb; 174(1-3):71-7. PubMed ID: 19782467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues.
    Liu W; Yang J; Xiao B
    J Hazard Mater; 2009 Jan; 161(1):474-8. PubMed ID: 18457916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide.
    Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X
    J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material.
    Li C; Sun H; Yi Z; Li L
    J Hazard Mater; 2010 Feb; 174(1-3):78-83. PubMed ID: 19782471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass waste as a clean reductant for iron recovery of iron tailings by magnetization roasting.
    Deng J; Ning XA; Shen J; Ou W; Chen J; Qiu G; Wang Y; He Y
    J Environ Manage; 2022 Sep; 317():115435. PubMed ID: 35751253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor.
    Liu Y; Du F; Yuan L; Zeng H; Kong S
    J Hazard Mater; 2010 Jun; 178(1-3):999-1006. PubMed ID: 20227178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.
    Samouhos M; Taxiarchou M; Tsakiridis PE; Potiriadis K
    J Hazard Mater; 2013 Jun; 254-255():193-205. PubMed ID: 23611801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of magnetic separation technology for the recovery of colemanite from plant tailings.
    Alp I
    Waste Manag Res; 2008 Oct; 26(5):431-8. PubMed ID: 18927062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of coal combustion wastes.
    Oz D; Koca S; Koca H
    Waste Manag Res; 2009 May; 27(3):267-73. PubMed ID: 19443646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations.
    Zanko LM; Niles HB; Oreskovich JA
    Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S51-65. PubMed ID: 18166256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv X; Bai C
    J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment.
    Xiang J; Huang Q; Lv W; Pei G; Lv X; Bai C
    J Hazard Mater; 2018 Sep; 357():128-137. PubMed ID: 29870897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation.
    Hernández CM; Banza AN; Gock E
    J Hazard Mater; 2007 Jan; 139(1):25-30. PubMed ID: 17084523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.
    Zhang Y; Cai N; Yang J; Xu B
    Chemosphere; 2008 Oct; 73(5):650-6. PubMed ID: 18727998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.
    Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L
    J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of Iron and Rare Earths from Low-Intensity Magnetic Separation (LIMS) Tailings through Magnetization Roasting-Magnetic Separation.
    Hou S; Wang W; Zhang B; Li W; Guo C; Li Q; Li E
    ChemistryOpen; 2024 Feb; 13(2):e202300059. PubMed ID: 37902712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.
    Presciutti F; Capitani D; Sgamellotti A; Brunetti BG; Costantino F; Viel S; Segre A
    J Phys Chem B; 2005 Dec; 109(47):22147-58. PubMed ID: 16853882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D architectures of iron molybdate: phase selective synthesis, growth mechanism, and magnetic properties.
    Ding Y; Yu SH; Liu C; Zang ZA
    Chemistry; 2007; 13(3):746-53. PubMed ID: 17154198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.